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Abstract
Network function virtualization (NFV) technology is an efficient way to address the increasing difficulty of provisioning and 
managing network services. However, NFV-related service function chaining (SFC) deployment in multi-domain networks 
remains challenging, and there is still room for performance improvement. This paper investigates many heuristic algorithms 
in the same field and proposes a new method for dynamic SFC deployment in a multi-domain network. In our study, we 
combine a heuristic algorithm with reinforcement learning and divide the complex problem into several parts. This algorithm 
efficiently gives the SFC deployment scheme in the multi-domain network with subdomain privacy protection requirements 
and considers the energy savings of the multi-domain networks. Compared with the existing approach, the proposed algo-
rithm has superiorities in terms of deployment success ratio, deployment profit, time efficiency, and energy consumption.

Keywords Network function virtualization · Service function chaining · Energy-saving · Network service deployment · 
Reinforcement Q-learning

1 Introduction

Network function virtualization [1] involves programming 
the functions of dedicated network equipment, such as 
gateways and firewalls, by virtualization technologies in a 
network that supports the deployment of virtual machines, 
which virtualize as a virtual machine (VM) or container 
(Docker). Some network services that are associated with the 
hardware can be deployed in a software manner to achieve 
the same effect [2].

With the technology of network function virtualization, 
virtualized network functions (VNFs) [3] can generally be 
employed to represent the network services that are deployed 
on the nodes of the virtual function network topology. An 
SFC [4] is formed when several VNFs in a specific order are 

connected by a path to form a whole set of services. This 
technology reduces the hardware cost and operation cost [5, 
6] but has requirements for computing resources, bandwidth 
resources, and robustness of the VNF [7].

After investigating the service requirements based on user 
requirements, the information for SFC deployment, such as 
user access point, data acquisition point, and required ser-
vice function type, required resources (i.e., CPU, memory, 
and bandwidth), can be obtained [8]. A deployment scheme 
that satisfies both the requirements of users and the interests 
of service providers is needed [9]. VNF is deployed on the 
nodes of the physical network, and the data flow of a user is 
planned to form an SFC according to the scheme.

Since this technology was proposed, numerous studies 
have explored the virtualization of network functions [10, 11]. 
It remains a problem to determine an SFC beneficial to both 
users and providers, combining a service network with user 
demand. This type of problem, known as VNF deployment (vir-
tualized network function-placement, VNF-P), is an NP-hard 
problem [12]. VNF deployment involves various optimization 
issues such as network structure [13], server performance [14] 
network transmission performance [15], network energy con-
sumption [16], and multi-operator collaboration [17]. Solutions 
have evolved from the initial mathematical modeling of linear 
programming to the heuristic algorithm [18].
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With advancements in computer performance, machine 
learning has gained the interest of researchers and has a role 
in prominent fields [19]. Machine learning is also introduced 
to the virtualization of network functions [20]. Determining 
how and where to use machine learning in this field for bet-
ter results depends on researchers’ continuous exploration 
and discovery.

2  Related work

SFC deployment problems include static SFC deploy-
ment and dynamic SFC deployment [21, 22]. In static SFC 
deployment, the deployment decision is one-time and the 
user’s needs can be arranged in advance. An SFC will always 
exist in a network after deployment. Thus, the general goal 
is to increase the number of successful deployments. For 
example, the BSVR algorithm proposed in [23] mainly 
considers the load balance of the network and the number 
of SFCs that can be successfully deployed. In addition, the 
VNF set in [23] has sharing characteristics, and one VNF 
can be shared by multiple SFCs. For privacy protection, we 
assume that a VNF belongs to only one user in this paper.

In this paper, we study the dynamic SFC deployment 
[24], which is close to reality. User requirements come in 
sequence over a period of time. When a requirement arrives, 
an SFC must be deployed, and the deployment order of SFCs 
cannot be exchanged. The deployed SFC in the network will 
have an online time limit. When the online time is over, the 
SFC will be withdrawn, and the occupied network resources 
will be released.

The SFC deployment of a multi-domain network is more 
complicated. A multi-domain network is composed of mul-
tiple single-domain networks connected by top-domain 
links. Every single domain network may belong to different 
managers or different areas. Differences exist in the domain 
bandwidth resources and top-domain bandwidth resources. 
To satisfy a user requirement, several VNFs may need to be 
distributed in different single domains. The access nodes 
of a few top-domain paths will also affect the direction of 
an SFC in each domain. Refs. [25, 26] have studied cross-
domain SFC orchestration. The authors model the SFC 
deployment problem in the multi-domain network to solve 
the optimization, then a heuristic algorithm is added to the 
algorithm to improve the performance. The authors of Ref 
[27]. propose the Cooperative Multi-agent Reinforcement 
Learning (CMRL) based algorithm for multi-domain SFC 
routing problem. The authors of Ref [28]. design a novel 
DRL framework based on the enhanced deep deterministic 
policy gradient (E-DDPG) for the efficient SFC embedding 
in the dynamic and complex cloud network scenarios. In 
[29], information is shared among subdomains and central-
ized control is used to achieve the purpose of multi-domain 

cooperative deployment of an SFC. However, this method 
is not conducive to multiservice providers or multi-region 
cooperation, and the private information of a subdomain 
may be leaked.

To resemble reality, privacy protection for every single-
domain network may be required in the multi-domain net-
work. The information between each single-domain network 
is not interoperable. Some information is not uploaded to 
the general control platform but is managed by the single-
domain network's control platform. This scenario with pri-
vacy protection is more similar to the future network with 
the collaboration of multiple service providers. The authors 
of Ref. [30] investigate the collaboration framework of secu-
rity services in the multi-domain network, which can negoti-
ate not only the tasks to be launched or unloaded but also 
the duration of collaboration and the number of resources 
for each task to achieve multi-domain collaboration. In [31], 
satellite and ground networks are explored. Each ground sin-
gle-domain network is operated cooperatively using satellite 
master control. Compared with the simple non-cooperative 
top-domain path calculation method, this method has less 
mapping delay, and operators can reasonably distribute the 
computational load without providing topology information. 
Ref. [32] is one of the few studies of the energy-saving of 
SFC deployment in multi-domain networks with the promise 
of protecting the privacy of subdomains. In the algorithm, 
the boundary nodes of top-domain communication are 
exposed through each subdomain to form an abstract net-
work. The SFC path is gradually detailed and has an excel-
lent energy-saving effect and time efficiency, but the success 
rate of deployment and the profitability of the service pro-
vider are not mentioned. Ref. [28] introduces an innovative 
DRL framework utilizing the enhanced deep deterministic 
policy gradient (E-DDPG) to effectively handle SFC embed-
ding in dynamic and complex cloud network environments. 
Ref. [33] presents a deep learning model that integrates a 
multitask regression layer on top of graph neural networks 
to predict the future resource needs of each VNF instance.

The algorithm proposed in this paper combines reinforce-
ment learning with heuristic algorithms and not only takes 
advantage of the swift decision-making speed of Q-learning 
but also employs heuristic algorithms to lessen the difficulty 
of some problems. The main contributions of this paper are 
as follows:

1. Hierarchical Reinforcement Learning Framework: 
We introduced a framework specifically designed for 
dynamic SFC deployment in multi-domain networks, 
innovatively partitioning the provisioning challenge into 
two hierarchical levels: top-level domain networks and 
sub-domain networks.

2. Privacy-Aware Decision Making: Our method distinc-
tively embeds privacy into the reinforcement learning 
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process for multi-domain networks, pioneering inde-
pendent decision-making within subdomains through 
our hierarchical model.

3. Energy-Efficient SFC Provisioning: Distinguishing 
itself, our algorithm prioritizes energy efficiency along-
side deployment success and profitability within the RL 
framework.

4. Adaptive Learning for Dynamic Networks: Our 
method stands out for its adaptive learning capabili-
ties, designed to evolve with the changing dynamics 
of network conditions and demands. Meanwhile, the 
algorithm avoids the slow training speed caused by the 
complicated Q-learning training model and provides a 
new method for solving this kind of problem.

3  Problem description and modeling

In this section, we study the deployment of dynamic SFC in 
a multi-domain network. A node’s computing resources and 
channel bandwidth resources in the network are limited. SFC 
requests arrive sequentially, and after working for a while, 
the SFCs expire and release the allocated resources. The 
privacy of data within every single domain in the network 
is protected. Our goal is to improve the profit of operators 
and the success rate of SFC deployment.

There are many servers in a multi-domain network. 
Energy saving is one of the optimization goals of the algo-
rithm. Turning off unserved machines can reduce costs and 
thus increase the service providers’ profit.

In this multi-domain network scenario, composed of mul-
tiple single domains, also referred to as subdomains, each 
node is a general-purpose server with a unique capacity of 
computing resources. When the SFC passes, it starts up to 
provide function deployment or forwarding services. Other-
wise, it remains off. The links in a multi-domain network are 
grouped into top-level domain links and sub-domain links. 
The top-level domain links and sub-domain links have dif-
ferent bandwidth resource capacities. Due to their strategic 
position as the few links connecting different domains, top-
level domain links play a pivotal role in determining the 
efficiency and success of SFC deployment. Their limited 
capacity directly impacts the overall network performance, 
making them a critical factor that demands special attention 
in our study. Understanding and optimizing the utilization 
of these top-level domain links is essential for achieving a 
seamless and effective deployment of SFCs across the entire 
multi-domain network.

In this network scenario, there are always new user 
requirements arriving. Requirements include the source 
and destination node, duration, and specific virtual network 
functions. To meet more user requirements, the SFC must be 
withdrawn from the network when its offline time reaches. 

According to the actual situation, we need to consider data 
privacy protection for each domain. Therefore, some data 
in the single domain will not be reported to the general con-
trol platform and can only be processed by the sub-control 
platforms of the subdomain, making the problem more real 
and complex.

The objective is to effectively deploy an SFC in a multi-
domain network, improve the success rate of SFC deploy-
ment, maximize the profits of service providers, shorten the 
decision time, meet all constraints including intra-domain 
privacy protection, and thus make the network more energy 
efficient.

3.1  Multi‑domain network model 
with virtualization functions

The multi-domain network is composed of multiple single 
domains. In reality, every node within a single domain is 
a server or server group. Each node will have sub-domain 
links but only the nodes of borders have top-domain links.

The topology of the whole network is G = (V ,E) , where 
V  is the set of nodes and E is the set of edges between con-
nected nodes. v ∈ V  is a specific node, and Iv is the comput-
ing resource of the node v . e ∈ E is a specific edge in the 
topology, which may be a top-domain link or a sub-domain 
link, and Be is the bandwidth resource of the link e . Both 
computing resources and bandwidth resources are limited 
and may be exhausted by SFC deployments. Nodes that 
possess greater computational resources and bandwidth are 
more suitable to serve as the nodes of borders.

The single-domain network is Ginter
n

 , where n is the num-
ber of subdomains. The top-domain links set is Etop , and the 
set of sub-domain links is Einter . The elements in the sets are 
etop and einter

n
 . E includes sub-domain links in n subdomains 

and top-domain links between subdomains.
For all nodes in the network, all kinds of VNFs can be 

deployed as long as sufficient compute resources are avail-
able. However, due to limited computing resources deter-
mined by the combination of CPU and memory, the total 
computing resources required by a node to deploy VNFs 
cannot exceed the computing resource capacity of that node, 
as expressed in Formula (1). The maximum capacity of 
the node's computing resources is I_maxv . Iv is computing 
resource consumption.

Bandwidth resources of network links are also limited, 
and the capacities of the two kinds of links are different. 
The maximum capacity of the sub-domain link is B_maxinter

e
 , 

and that of the top-domain link is B_maxtop
e

 . The limited 
bandwidth resources in the links are shown as Formulas (2) 
and (3).

(1)Iv ≤ I_maxvifv ∈ V
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The positions and numbers of the nodes and paths in 
each single-domain network are also defined for secu-
rity protection. The positions, numbers, and computing 
resources of nodes and the bandwidth resources of the 
sub-domain paths cannot be exposed. Only some fuzzy 
calculated values can be externally displayed for the link-
age among multiple domains.

The energy consumption in the network is also con-
sidered. In this section, only the energy consumption of 
the server is taken into account; it is composed of boot 
consumption Energyidle and VNF load energy consumption 
Energyvnf  , as shown in Formula (4).

The boot energy consumption is determined by whether 
the server is turned on or off. When no online SFC passes 
the node, the node is in a shutdown state and the energy 
consumption is zero. The load energy consumption of a 
node depends on the VNFs deployed on it.

3.2  Cross‑domain service functional chain demand 
model

SFC deployment provides a solution according to the 
users’ requirements. RE  is the set of requirements 
in the multi-domain virtualization functional net-
workRE =

{
Snode
i

, Sdomain
i

, dnode
i

, ddomain
i

,Pi, ri, ti
}
 . snode

i
 is the 

user's access node, and sdomain
i

 is the user's access domain. 
The two values are combined as the starting node of the 
SFC to be deployed, which is given by the user and cannot 
be changed. A Boolean variable x1 indicates whether the 
SFC deployed according to the requirements satisfies this 
condition. first_nodei is the first node of the SFC, and the 
variable x1 is obtained by Formula (5).

Another node that cannot be changed is a termination 
node in SFC. dnode

i
 is the data supply node, and ddomain

i
 

is the domain where the node is located to provide the 
data needed by the user. The Boolean variable x2 indicates 
whether the deployed SFC satisfies the condition accord-
ing to the requirements: 1 is satisfied, and 0 is not satisfied. 
last_nodei is the last node of the SFC, and the variable x2 
is obtained by Formula (6).

(2)Be ≤ B_maxtop
e
ife ∈ Etop

(3)Be ≤ B_maxinter
e

ife ∈ Einter

(4)Energytotal = Energyidle + Energyvnf

(5)x1 =

{
1if first_nodei = snode

i
, snode

i
∈ sdomain

i

0else

Pi is an ordered array that represents several VNFs 
required in this SFC, where the elements are the VNFs 
that need to be deployed in order. lengthSFC_VNFi

 is the total 
number of VNFs that need to be deployed for this par-
ticular configuration of the SFC. lengthPi

 is the number of 
VNFs required to deploy the SFC from the start node to 
the end node. The Boolean variable x3 indicates whether 
the deployed SFC satisfies this condition. SFC_VNFi is the 
ordered VNF list from the starting node to the ending node 
of the SFC to be deployed, and the variable x3 is obtained 
by Formula (7).

To facilitate the calculation of profits, ri is the income 
generated by the successful deployment of the SFC. ri is 
generally proportional to the number of VNFs deployed in 
the SFC. ri is calculated by Formula (8), where m > 1 is 
determined by the size of the network and � is the unit value.

Different VNFs have a different consumption of comput-
ing resources, which is represented by �j . The cost of set-
ting up the VNF also differs depending on the amount of 
computing resource consumption, and the cost coefficient 
is oj. The computing resource consumption is proportional 
to the cost. The cost of deploying an SFC is costi , as shown 
in Formula (9).

According to the cost and benefit of an SFC, the profit of 
deploying the SFC can be obtained. The profit is profiti as 
expressed by Formula (10).

When the profit is positive, the SFC is worth deploying, 
which is consistent with reality. The Boolean variable x4 
indicates whether the SFC satisfies the condition, a value of 
1 is satisfied, and a value of 0 is not satisfied. The variable 
x4 is obtained by Formula (11).

After successful deployment, a special parameter for 
dynamic SFC deployment is the duration of the SFC ti.

(6)x2 =

{
1if last_nodei = dnode

i
, dnode

i
∈ ddomain

i

0else

(7)x3 =

⎧
⎪⎨⎪⎩

1if lengthSFC_VNFi
= lengthPi

andSFC_VNFi[j] = Pi

�
j
�
,

0 ≤ j < lengthPi

0else

(8)ri = lengthPi
∗ m ∗ �

(9)costi =
∑
j∈Pi

oj ∗ �j ∗ �

(10)profiti = ri − costi

(11)x4 =

{
1if profiti ≥ 0

0else
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3.3  Dynamic service function chain deployment 
model

Different from static SFC deployment, the requirements arrive 
with an irregular time interval over a certain time range in 
dynamic SFC deployment. We cannot choose the order in 
which users’ requirements arrive. For a requirement, a deci-
sion should be made based on whether it can be deployed 
immediately. A decision is more complicated than a static 
SFC deployment problem, which can rearrange the deploy-
ment order. The arrival time of demand generally conforms to 
the Poisson distribution.

In dynamic SFC deployment, the deployment requirements 
are accompanied by the online duration ti , which means that 
the deployed SFC will withdraw from the network after a cer-
tain time and return the occupied network resources, behav-
ing closer to the real network. After this specified duration, 
the deployed SFC automatically withdraws from the network, 
releasing the occupied resources back to the pool. This mech-
anism closely mimics the behavior of real-world networks, 
where services are not static but are active for a limited period. 
Different SFCs have different durations, and they are randomly 
generated within a range and conform to a normal distribution.

According to the user requirements, a successful SFC 
deployment needs to satisfy the following points: the source 
and destination node are correct; the required VNF is success-
fully deployed; a continuous path from the start node to the 
end node exists; and the benefit value is greater than the cost 
value. Otherwise, this deployment fails. The Boolean vari-
able successi indicates whether the SFC can be successfully 
deployed: 1 is successful, and 0 is unsuccessful. The calcula-
tion Formula (12) is expressed as follows:

In this way, the total profit of the entire deployment process 
profittotal can be calculated:

The goal of dynamic SFC deployment, which is similar to 
static SFC deployment, is to deploy as many SFCs as possi-
ble. Different network structures, the fixed order of arrival of 
requirements, and limited bandwidth resources and computing 
resources, etc. will affect the deployment, overall SFC deploy-
ment success ratio and network service provider profits.

4  Algorithm design

SFC deployment is more complicated in a multi-domain net-
work. Our research deploys SFC with clear paths between 
domains and conserves energy of the whole network with 

(12)successi = x1 ∩ x2 ∩ x3 ∩ x4

(13)profittotal =
∑
i∈RE

successi ∗ profiti

the promise of protecting the privacy of each single domain. 
The algorithm combines Q-Learning and a heuristic algo-
rithm, layers the multi-domain network and separately trains 
them. The privacy data in a single domain is fuzzified and 
then reported. The selection of a path is optimized by the 
energy-saving scoring module.

4.1  Q‑learning model optimization

The problem in this paper conforms to the Markovian deci-
sion process but is slightly different from the general rein-
forcement learning problem. A limited number of decisions 
is required in this problem. Therefore, this paper combines 
the Q-learning algorithm with this problem and optimizes 
the model. In this way, we not only harness the adaptability 
and decision-making capabilities of reinforcement learning 
but also navigate around its inherent challenges, offering 
an innovative solution for dynamic SFC deployment. This 
approach enables us to amalgamate the strengths of RL with 
the robustness of metaheuristic algorithms like GA and PSO, 
effectively mitigating their respective limitations.

The improved Q-learning algorithm in this paper 
improves the Q matrix and training algorithm. We trans-
form the two-dimensional matrix into a five-dimensional 
matrix, which has the nodes now_h,now_node , action_node , 
end_node , and h . now_h is the number of nodes that have 
passed in the current state, that is, the current chain length. 
now_node is the node where the agent is in the current state. 
action_node is the possible next node, which is the adjacent 
node of the current node. end_node is the node to which 
the SFC will eventually reach. h is the minimum number of 
passing nodes that are required in the deployment require-
ments and are generally related to the number of VNFs to be 
deployed. Only if the length of the alternative path is greater 
than the number of VNFs to be deployed, will a discussion 
of it should be employed as the output result be necessary.

Specifically, the single subscript state s of the original 
Q matrix are represented by the four subscripts now_h
,now_node , end_node and h , while action a is represented 
by the action_node . The current state is determined by four 
subscripts, with the exception of action_node . The action 
with the large value was selected for execution.

The advantage of replacing the two-dimensional matrix 
with a five-dimensional matrix is that observing the current 
state is easier. The information on the network topology is 
closely related to each state. If a single index is used to rep-
resent the state, various states should be numbered, which 
increases the workload. The five-dimensional matrix can 
clearly observe the state information, and the intervention 
can be more timely and more adaptive to catastrophes of 
the dynamic network. On the other hand, this matrix form 
can divide all states into several independent parts, and this 
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division is conducive to parallel programming and can fur-
ther accelerate the training process.

4.2  General algorithm design

In this section, we introduce the Q-learning multi-domain 
SFC deployment algorithm for dynamic SFC deployment. 
The proposed algorithm consists of two stages:

As shown in Fig. 1, the demand enters the hierarchical 
network reinforcement learning routing module. The main 
task of this module is to perform routing in a multi-domain 
network and output a set of alternative routes.

Different from the completely transparent information in 
a single domain network, a multi-domain network has sub-
domain privacy protection. The network must be layered, 
the privacy information should be separated, and then the 
training and use of reinforcement learning should be sepa-
rately conducted.

The main task of the network energy-saving score mod-
ule is to select the best path from the alternative path set 
given by the previous module for deployment to keep the 
energy consumption at a low level. The information cannot 
be directly reported because the privacy of the subdomain 
is to be protected. The information needs to be fuzzified, 
uploaded to the general control platform, and scored. The 
deployment plan is then output.

The next two sections will detail the two modules and 
the algorithm steps. Some of the variable definitions in the 
algorithm are shown in Table 1.

4.3  Hierarchical network reinforcement learning 
routing module

The main function of the hierarchical network reinforcement 
learning routing module is to output a set of alternative paths 
that satisfy the user's SFC requirements. The following con-
tent consists of three parts: to introduce network layering, 
the training and decision algorithm of reinforcement learn-
ing for path selection between two domains, and the path 
selection algorithm in each subdomain. Combined with the 
previous research results, the optimized Q-learning algo-
rithm is employed as the reinforcement learning algorithm.

List of user

requirements

Hierarchical

network

reinforcement

learning

routing module

Network

energy-

saving score

module

SFC deployment

plan

Fig. 1  General algorithm framework

Table 1  Key notations in this paper

Notation Definition

G The multi-domain network topology
Ginter

n
The internal topology of the subdomain

Gtop The abstract of the top network
V A list of all nodes in the network topology
Vi A list of nodes adjacent to node i in the network
Vaccess A list of cross-domain nodes
hmax The maximum length of the SFC in the subdomain
hmin The minimum length of the SFC in the subdomain
Qtop A four-dimensional memory matrix, stores the recommended values for actions in each state
Qinter

n
A five-dimensional memory matrix, stores the recommended values for actions in each state

Rtop A four-dimensional reward matrix, stores the reward or penalty values for some combination of states and actions
Rinter
n

A five-dimensional memory matrix, stores the reward or penalty values for some combination of states and actions
h The length of the chain formed in the current state
RE The list of SFC requests
PAtop The set of paths that match the starting and ending nodes only in the top network
PAinter

k
The set of paths that match the starting and ending nodes only in the subdomain network

num_vnf k
i

Number of VNF nodes that can be deployed in the i-th path in the k-th subdomain
ONL List of online SFCs
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4.4  Multi‑domain network layering

Multi-domain network has many subdomains, which may 
belong to the same network service provider, and can have 
unified management. Thus, this network can be regarded 
as a superlarge single-domain network, and the previous 
single-domain algorithm is suitable with a slight modifica-
tion. However, each subdomain may also belong to different 
Internet service providers or different regions. In this case, 
each subdomain has a unique control and management plat-
form. The data and resources in the network with privacy 
protection requirements will not continue to be uploaded, 
which is a new challenge for services collaboration in multi-
domain networks.

Multi-domain network has subdomain privacy protection 
demands while provisioning an SFC request. The locations 
of the nodes in the subdomain, connection of channels and 
remaining resources are inconvenient for the entire network 
to share, which hinders the ability to establish a unified 
reinforcement learning model and can only be separately 
addressed. A hierarchical network model and the respec-
tive reinforcement learning models need to be established. 
By some numerical processing, the blurring information of 
each subdomain can be collected and reported for further 
decision-making.

The network topology G is composed of the n subdomain 
Ginter

n
 and top-domain paths. The subdomain is regarded as 

an abstract node, the top-domain links are considered the 
links between these abstract nodes, and the abstract network 
topology is the top network Gtop . For the general control plat-
form of the top network, the available information includes 
the location and resources of the links and the information 
reported by the virtual nodes. Fig. 2

A simple example is shown in Fig. 3, which includes 
an original multi-domain network with 5 subdomains. The 
black nodes in each subdomain are nodes that can com-
municate between two domains, and the white nodes are 
in the domain. Seven top-domain links exist between each 
domain and are indicated by the dashed lines. Abstract and 
layering this multi-domain network, the top network of the 
network and each subdomain network are shown on the right 
side of Fig. 3. The structure of the top network is similar to 
the single-domain network; the difference is that the value 
reported by the abstract node is the fuzzy value within the 
original subdomain to which it points, and this fuzzy value 
is calculated by the formula for multi-domain collaborative 
work to protect the privacy of the subdomain. The value 
has no practical meaning after leaving the SFC deployment 
problem.

After the multi-domain network is layered, the top net-
work Gtop and n subdomain networks Ginter

n
 will exist. The 

processing of these networks is separately discussed in the 
following sections. The processing consists of two parts: 

the top-domain Q-learning training and decision algorithm 
of the top network and the sub-domain Q-learning training 
and decision algorithm of the subdomain network.

For the top-domain Q-learning training and decision 
algorithm of the top network, we must determine the form of 
the Q matrix Qtop . This matrix is a four-dimensional memory 
matrix with four subscripts: now_h,now_node , action_node , 
and end_node . The minimum hop counts in routing of the 
top network may not have to be considered. Because the 
source and destination nodes of the SFC may be in two con-
nected subdomains, h is 1, and some values in the algorithm 
do not have to be skipped.

For the sub-domain Q-learning training and decision 
algorithm of the subdomain network, the Q matrix can refer 

Sub-domain form a 

collection of concrete 

local paths

Transfer the collection of information uploaded 

by each sub-domain to the next module

Form a collection of top network abstract paths

The abstract path distributes related subdomains

Calculate the path 

information in the 

sub-domain

···

···

Sub-domain form a 

collection of concrete 

local paths

Calculate the path 

information in the 

sub-domain

User requirement

Fig. 2  Process of implementation in routing module

top network

each subdomain networkoriginal network

Fig. 3  Process of implementation in routing module
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to the path selection section of SFC deployment in a single-
domain network. The memory matrix of the subdomain 
Ginter

n
 , Qinter

n
 is a five-dimensional memory matrix with five 

subscripts: now_h,now_node , action_node , end_node and h.

4.5  Top‑domain Q‑learning training algorithm

The goal of Algorithm 1 is to train the Qtop matrix in the 
top network. For the Rtop reward matrix, set now_node and 
end_node to 1000, which indicates the reward for completing 
the route search, and set the remaining elements to 0.

Different from the single domain Q-learning training 
algorithm, Algorithm 1 does not specify the length interval 

limit of the searched path. Due to the nature of the top net-
work, the size of the nodes will not be too large; so the algo-
rithm changes to remember all the paths from the shortest 
two nodes to the longest path without looping. Formula (1) 
is further concretized to obtain Formula (14) for Q-learning 
training.

(14)Q
(
si, ai

)
= 0.8

(
r + ��x

ai
�
Q
(
si
�
, ai�

))

Algorithm 1  Top-domain Q-learning training

4.6  Top‑domain Q‑learning training algorithm

When the training finishes, the Qtop generation file is saved 
by the system. In the decision stage, Qtop is used to output 
a certain number of abstract alternative paths PAtop , which 
satisfies the user's SFC cross-domain requirements, repre-
sents the passed subdomains and top-domain links in the 

original network. The purpose of this algorithm is to form 
these abstract paths and send them to the relevant subdo-
main's sub-control platform for subsequent generation of the 
next layer path.

In Algorithm 2, part of the data is sent to the network 
energy-saving score module, that is, the set of alterna-
tive abstract paths in the top network. Subsequently, the 
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sub-control platform of each subdomain decides the path 
in the specific domain and reports the fuzzy value after 

calculation. Only after the two parts of data are combined, 
can the path score be compared.

Algorithm 2  Top-domain Q-learning decision

4.7  Sub‑domain Q‑learning training algorithm

Since each subdomain has a unique sub-control platform, 
the algorithm can be executed in parallel to improve the 
efficiency. The algorithm is slightly different from the sin-
gle-domain Q-learning training algorithm. For the reward 
matrix Rinter

n
 , among the elements with the same index of 

now_node and end_node , end_node represents the elements 
in the domain used to connect to other domains are set to 
1000, which is the reward for completing the route search, 
and the remaining elements are set to 0.

The convergent matrix Q can be applied in each subdo-
main for path selection. Two different points exist between 

Algorithm 3 and the single-domain Q-learning training algo-
rithm. First, the nodes in the subdomain that communicate 
with other domains must be the starting and ending nodes 
of a path. During the training process, the workload of other 
nodes as the end node to a loop is reduced. Second, when 
writing to memory, the reverse writing is to take the nodes 
in the subdomain that are employed for connecting with 
other domains as the end nodes, while the positive writing 
is to take the nodes as the starting nodes and form two path 
memories at a time.
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Algorithm 3  Sub-domain Q-learning training

4.8  Sub‑domain Q‑learning decision algorithm

In the decision-making stage, the network general control 
platform will send pa and re to subdomains that each abstract 
path pa in the alternative path set of the top network PAtop has 
passed, and then generate the paths in each subdomain and 
perform the preliminary processing.

The starting and ending nodes of the path in the subdo-
main are determined by pa and re. If the domain is a start–end 
domain, one start–end node is a node in the domain, and the 
other start–end node is a border node that connects other 
domains. If the domain is a subdomain of an intermediate 
path, the start–end nodes are two border nodes. The number 

of generated paths in the subdomain should be limited to 
facilitate subsequent processing and improve the efficiency of 
multi-domain SFC deployment. The optimization goal of the 
algorithm in this section is to save the energy of the network 
server. Thus, Formulas (15) and (17) are used to screen paths, 
and the best few paths are reserved. Formula (15) ensures that 
the bandwidth resources of the link in the domain are sufficient 
for deploying the SFC.

Formula (16) calculates the approximate energy consump-
tion using the path, including the basic energy consumption of 
the new boot node and the maximum energy consumption 

(15)Bmaxinter
e

− Be > BSFC, e ∈ SFC
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required to deploy the VNF. In Formula (16), numnew is the 
number of unpowered nodes that exist on the path, Energyidle 
is the basic energy consumption of each node that needs to be 
turned on for the path, which contains energy expenditure for 
a machine to transition from an off state to an operational state, 
numnode_on_pak

i
 is the number of nodes on the path, Energyvnf  is 

the energy consumption of the VNF that requires the most 
computing resources in the deployment requirements. k is the 
domain number and i is the path number.

For subsequent paths, the contents of the report should be 
fuzzy to protect the privacy of the subdomain. We use Formula 
(17) to abstract the situation in the subdomain and redistribute 
the values for the subsequent report. The value calculated by 
Formula (18) is only relevant to this problem and does not have 
an alternate meaning.

(16)
Energek

i
= numnew ∗ Energyidle

+Energyvnf ∗ numnode_on_pak
i

(17)�k
i
=

Energek
i
∗ 100

1000

Algorithm 4  Sub-domain Q-learning decision
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Algorithm 4 is the execution process after each pa in 
PAtop is distributed to the subdomain. When Algorithm 4 
records the number of deployable VNF nodes num_vnf k

i
 , 

the VNF that consumes the most resources in the list of user 
requirements re is employed as the standard, which reduces 
the probability of deployment failures due to insufficient 
resources. Note that �k

i
 and num_vnf k

i
 of the alternative route 

set PAinter
k

 in the domain are already arranged in ascending 
order of �k

i
 to facilitate subsequent path selection.

4.9  Network energy‑saving score module

Because of the privacy protection of the subdomains in the 
multi-domain network, the network energy-saving score 
module can only process the information of user demand 
re, the abstract path of the top network PAtop , as well as 
�k
i
 and num_vnf

k
i
 of the alternative path set PAinter

k
 in each 

subdomain.
The process of forming an abstract path into a concrete 

path is shown in Fig. 3. For the user demand re, when 
the total control platform of the top network gives a set 
of alternative abstract paths PAtop , considering one of the 
abstract paths pa as an example, it has already consid-
ered whether the bandwidth of the top-domain path allows 
deployment. The energy consumption of the path between 
two nodes is not discussed here.

Figure 4 shows the selection rules of the specific path 
formed by the abstract path; a decision about the process 
is made by using the stack structure: (i) Each subdomain 
of the abstract path pa will submit the �k

i
 and num_vnf k

i
 of 

the set of feasible paths in the domain. This information is 
applied as a stack formed by the elements. �k

i
 are pushed 

onto the stack in ascending order. (ii) The top element of 
the stack represents the most energy-efficient path. The 
combination of pak

i
 with the minimum �k

i
 in each subdo-

main is theoretically the most energy-efficient solution. 
Therefore, one element is popped from the top of each 
stack, and the paths represented by these elements form 
an SFC. However, whether VNF in the requirement can be 
deployed on this SFC should be considered by determining 
whether the sum of num_vnf k

i
 in each element is greater 

than the number of VNFs in the user requirement. (iii) 
If the path in (ii) is not able to deploy all the VNF in the 
user requirements. To improve the success rate of deploy-
ment, we find the minimum �k

i
 in the �k

i
 with the second 

minimum subscript i, and replace part of the path in the 
original scheme. Thus, the top elements of the stacks are 
popped again for sorting. To further improve the deploy-
ment success ratio and reduce the workload, when looking 
for alternative paths of standby partial paths, among these 
sorted elements, the num� elements with the minimum �k

i
 

can be directly reserved. num� is the path rollback value, 
which as an adjustable value, can be adjusted and opti-
mized according to the specific situation.

Fig. 4  Process of path com-
bination in stack structure (a) 
Subdomains in the abstract 
path report information �k

i
 

and num_vnf k
i
 ; (b) Pop up 

the top element of the stack 
to form a specific path, and 
output the scheme if VNF can 
be deployed; (c) If the SFC in 
(b) is not deployable, try the 
alternate path
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After determining all the paths in the related subdo-
mains and confirming that VNF can be deployed, the score 
of the whole SFC is given. weightGinter

k
 is the weight factor 

of the subdomain, which increases to reduce the use of the 
subdomain. If no special requirements exist, they are set 
to 1. The score calculation Formula (18) is defined as 
follows:

The stack structure is utilized to generate the specific 
path, and Formula (18) is used to calculate the score. The 
algorithm of the network energy-saving score is defined 
as follows:

(18)score =
∑

Ginter
k

∈SFC

weightGinter
k

∗ �k
i

Algorithm 5  Network energy-saving score

5  Simulation results and analysis

5.1  Simulation environment

The simulation result is the average value of data obtained 
by multiple tests to ensure the accuracy of the experiment. 

Since the results are normally distributed, the average basi-
cally represents the most frequently occurring result value. 
The simulation program of the experiment was run on a 
computer with a CPU of 2.5 GHz Intel Core i5-2450 m and 
6 GB memory. The operating system was Windows 10. The 
algorithm model and simulation code are written with Java.
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The multi-domain network has the randomly generated 
network topology structure, which has 6 subdomains, and 
each subdomain has 10 to 20 nodes and 30 to 60 edges. 
Each node in this topology acts as a server, which not only 
provides functions of routing and forwarding but can also 
deploy multiple types of VNFs. The server supports all 7 
types of VNFs when computing resources are sufficient.

To test the task of dynamic SFC deployment, the chan-
nel bandwidth resources in the network are limited, and the 
total capacity of the node computing resources is 100 units. 
Different.

A VNF of type j consumes �j units of computational 
resources. The value of �j ranges from 1 to 7. Due to the 
characteristics of network function virtualization technology, 
the deployed VNF is set to only serve one user to protect 
users' privacy.

The bandwidth capacity of the top-domain link is 15 
units, and that of each sub-domain link is 25 units. Each 
deployed SFC occupies 1 unit of bandwidth resources in 
its path. The basic power consumption of a server is set to 
140 units. Since the computing resources that each VNF 
consumes is different, the load energy consumption ranges 

from 1 to 7 units, which is proportional to the consumption 
of the computing resources. To resemble reality, the online 
time of each user request follows a uniform distribution, and 
the arrival time follows a Poisson distribution, which ensures 
the randomness of the arrival and withdrawal of the SFC 
deployment request. In addition, the number of VNFs in the 
SFC requested by each user is normally distributed between 
3 and 6. In the simulation, this paper used 6 sub-domains to 
connect in different ways, creating three different topologi-
cal structures. Perform 10 experiments in each topology to 
obtain the average value as the result output.

The proposed algorithm is compared with those in 
[31] and [34], which also address the problem of dynamic 
SFC deployment in multi-domain networks. In the simu-
lation comparison, the algorithm in [31] is referred to as 
EE-SFCO-MD, the algorithms in [34] are referred to as 
WGT-D and WGT-LB, and the algorithm proposed in this 
paper is referred to as QLMD-SFC-DD.

5.2  Performance index

For the dynamic SFC deployment in the virtualized multi-
domain network, the following indexes are used in the 
simulation to evaluate the performance: deployment suc-
cess ratio, profit of network operator, average deployment 
decision time and average power consumption.

The deployment success ratio A is the ratio of the number 
of SFCs that are successfully deployed on the network to 
the number of all incoming requests. The calculation of A is 
obtained from Formula (19).

The profit of the network operator profittotal is the total 
profit of the network service provider after receiving 
the input SFC request. The calculation Formula (20) is 
expressed as follows:

The average deployment decision time C for an SFC 
request reflects the decision time required to deploy each 
SFC; it is calculated by dividing the total simulation time 

(19)A =
NumbersuccessfullydeployedSFC

Numberinputservicerequests

(20)profittotal =
∑
i∈RE

successi ∗ (ri − costi)
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Table 2  Parameters of simulation

num� = 0 num� = 3 num� = 6

�top 0.2—0.4 0.2—0.4 0.2—0.4
�inter 0.4—0.6 0.4—0.6 0.4—0.6
num� 0 3 6
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by the total number of input SFC requests. The calculation 
in shown in Formula (21).

The average power consumption E is the sum of the 
power consumption divided by the total number of success-
fully deployed SFCSs. The calculation formula of the aver-
age power consumption of each deployed SFC is shown in 
Formula (22).

5.3  Power calculation module

The simulation results consist of two parts: the comparison 
and performance analysis between the proposed algorithm 
and the other algorithm, and the demonstration and analysis 
of the impact of some adjustable parameters on the algo-
rithm’s performance.

(21)C =
Totalrunningtime

Numberinputservicerequests

(22)E =

∑
i∈RE successi ∗ EnergySFC

i

NumbersuccessfullydeployedSFC

5.4  Deployment success ratio

Figure 5 shows the comparison of the deployment suc-
cess ratio of the four algorithms. When the number of SFC 
requests is less than 200, the deployment success ratio of the 
QLMD-SFC-DD, EE-SFCO-MD, and WGT-LB algorithms 
can almost reach 100% because of the abundant network 
resources. The WGT-D algorithm deploys sub-chains to 
minimize latency, which can lead to uneven deployment and 
ultimately cause deployment failures in hotspot areas. With 
the increasing number of requests, the success rate starts to 
decrease. However, the difference is minimal before 500, 
which indicates that the network has not reached the near sat-
uration of resource bearing. Starting from 600, the QLMD-
SFC-DD algorithm has a large number of alternative paths, 
and the deployment success ratio is approximately 91%. The 
deployment success ratio of EE-SFCO-MD is gradually 
reduced to approximately 87% and the deployment success 
ratio of WGT-LB is gradually reduced to approximately 83% 
due to the shortage of resources in the network. The findings 
concluded that the deployment success ratio of the QLMD-
SFC-DD algorithm is similar to the comparison algorithm 
when the number of SFC requests is small. When the amount 
of SFC requests is large, the proposed algorithm has a higher 
deployment success ratio than the comparison algorithm for 
the environmental conditions set by the simulation.

5.5  Profit of network operator

Figure 6 shows the comparison results of the network opera-
tors’ profits of the four algorithms. When the number of SFC 
requests is less than 300, the profits of the QLMD-SFC-DD, 
EE-SFCO-MD, and WGT-LB algorithms are similar and 
increase with an increase in the number of deployments. The 
WGT-D algorithm's low deployment success ratio affects 
the profit of the network operator, making it lower than that 
of the other three algorithms. When the deployments range 
from 300 to 500, as a result of the limited number of network 
resources, the algorithms’ way of routing differ and have 
different costs and profits. After the number of SFC requests 
has risen to more than 500, due to the different deployment 
success ratios, the profit of network operators also substan-
tially differ. When the number of user requests reaches 800, 
the profit of the proposed algorithm is increased by 23.6% 
more than that of the other algorithms.

5.6  Average deployment decision time

Figure 7 shows the comparison results of the deployment 
decision time of the four algorithms. All algorithms have 
excellent performance in terms of decision time and exhibit 
minimal rise with an increasing number of SFC requests. 
The WGT-LB algorithm deploys sub-chains with the 
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objective of load balancing, which results in a longer SFC 
deployment decision time due to its global impact. However, 
as a heuristic algorithm, this time remains within an accept-
able range. After our proposed algorithm is optimized, the 
time is shorter than that of the other algorithms. When the 
number of user requests is 100, the deployment decision 
time of the proposed algorithm is 39.3% shorter than that of 
the other algorithm.

5.7  Energy consumption optimization

Figure 8 shows the comparison results of the energy con-
sumption optimization of the four algorithms. When the 
number of SFC requests is low, the number of SFCs that 
need a large number of new startups accounts for a large 
proportion of successfully deployed SFCs. Thus, the aver-
age energy consumption is relatively high but gradually 
declines as the number of SFC requests increases. The net-
work becomes stable in the later stage of deployment; thus, 
the average energy consumption of each SFC also tends to 
be stable. With the promise that the energy consumption of 
SFC that the EE-SFCO-MD algorithm deployed is better 
than other algorithms, we can conclude that the algorithm 
in this paper is not worse than the other algorithms and the 
main goal can be achieved while taking into account the 
energy-saving optimization of the network.

Summarizing all the comparison experiments, we con-
clude that the proposed algorithm outperforms the compari-
son algorithms in terms of success ratio, profit, and decision 
time while ensuring comparable energy consumption.

5.8  Influence of the adjustable parameters

The algorithm has three kinds of dynamically adjustable 
parameters. The first two kinds are �top and �inter . They are 
used to regulate the utilization rate of paths output by the 
Q matrix of the top network and each subdomain network, 
respectively. Another adjustable parameter is num� , which 
is used to control the number of alternative partial paths 
after filling the specific path of the abstract path fails for 
the first time.

For �top and �inter , the higher is the utilization rate, the 
larger is the number of paths output by the Q matrix. In 
this problem, the number of abstract paths of the top net-
work and the number of local paths of each subdomain will 
increase, which will improve the deployment success ratio 
to a certain extent but will increase the running time of the 
algorithm. We choose to increase the number of output local 
paths in the subdomain, so �inter chooses to use �Middle and 
there are not many interdomain paths, so �top chooses to use 
�Low to speed up the output time. Therefore, the parameters 
�top and �inter are fixed, and the parameter num� is changed. 
We observe the trend of the deployment success ratio and 

the deployment decision time. The values of the parameters 
are set as shown in Table 2.

Figure 9 is the simulation result of the deployment suc-
cess ratio for the three numerical values of num� . When 
num� is 0, the deployment of the SFC path is abandoned 
after the first-generation failure, which yields a lower 
deployment success ratio than the other two cases, and the 
gap increases with the number of requests. In the subse-
quent stage, when the network is close to saturation, due 
to resource constraints, large numbers of user requirements 
cannot be deployed. When num� is 3 or 6, the difference 
between the two is not large, because after providing 3 sub-
stitute local paths, the SFC path can be successfully gener-
ated. Thus, in the case of providing 6 substitute paths, usu-
ally, a deployment scheme can be successfully obtained by 
the first three paths. Different topologies may have a unique 
num� , which is determined by the connection of the topolog-
ical distribution in the subdomain. To attempt the value from 
small to large, we can obtain the set value of the parameter 
when the deployment success ratio does not substantially 
change. In the condition that the success rate of deployment 
is not different, the profit of deployment is also the same.

Figure 10 is the simulation result of the deployment deci-
sion time for three numerical values of num� . When num� 
is 0, the selection and ordering of substitute local paths are 
completely omitted; thus, the time is reduced. However, 
when num� is 6, 3 more substituting local paths need to be 
sorted than when the value is 3, and the time will slightly 
increase. When num� is 0, a short time is needed, and the 
deployment success ratio is lower, which will reduce the 
profit. When the value of num� increases, the decision time 
will also increase. To optimize the performance of the algo-
rithm, we assign the minimum value of num� that does not 
substantially change the deployment success ratio.

In the comparison simulation between the proposed algo-
rithm and other algorithms, the proposed algorithm sets 
num� to 3 to ensure the deployment success ratio, improve 
profits, and reduce the deployment decision time as much 
as possible.

The average energy consumption of the deployed SFC 
was compared to evaluate the energy-saving performance. 
The parameters �top and �inter have a great impact on energy 
consumption, and more path choices may provide more 
energy-efficient routing. The parameter num� , with the 
condition that the other two parameters are fixed, does not 
substantially contribute to saving energy. When num� is 0, 
it is the most energy-efficient scheme to deploy but has the 
lowest deployment success ratio. Assume that the top-of-
stack scheme is not employed and these alternate paths are 
utilized. When num� is greater than 0 before the stack struc-
ture converts the abstract path into a specific path, the data 
in the stack have been sorted in ascending order according 
to the energy consumption, and the greater num� will not 
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have a better energy-saving effect than the original scheme 
formed by the top of the stack.

6  Conclusion

This paper investigates the dynamic SFC deployment in 
multi-domain networks with privacy protection. We opti-
mize the Q-learning algorithm in the dynamic network and 
design a new deployment decision algorithm that combines 
reinforcement learning and a heuristic algorithm.

To protect the privacy of each subdomain in the multi-
domain network, the information in the subdomain cannot 
be uploaded directly, which further enlarges the difficulty 
of SFC deployment. We also add the module of network 
energy-saving to reduce energy consumption and operat-
ing cost. The algorithm layered the network and separated 
the top network and subdomain networks. The reinforce-
ment learning module was employed to select alternative 
abstract paths in the top network and was then distributed to 
each subdomain to form specific parts of the abstract path 
in parallel. By uploading fuzzy information, the network 
energy-saving scoring module scores each alternative path 
and finally obtains the deployment scheme. In the simula-
tion experiment, the proposed algorithm is compared with 
the benchmark algorithm. We find that the algorithm in this 
paper has achieved excellent results in terms of the decision 
time, network energy savings, deployment success ratio, and 
deployment benefits.

The future work directions and ideas consist of two 
parts, optimizing the algorithm and expanding the problem 
domain:

(1) Study some adjustable parameters that can affect the 
results in the algorithm to explore whether different optimal 
schemes exist in different situations, and further optimize 
the performance of the algorithm. With the enhancement of 
the computing power and the popularization of large-scale 
cluster computing, the distributed or parallel operation mode 
of the algorithm can be explored.

(2) According to the current progress, the future work 
of the virtualized functional network will be carried out on 
the independent resource management of the service net-
work [35], virtual machine migration of VNF deployment 
[36], further energy-saving operation of servers and chan-
nels in the network [37], and decentralization of resource 
allocation controller [38].

Author contributions Zhiying Wang wrote the main part of the manu-
script. Guanhua Huang developed the model and performed experi-
ments and performed the experiments. All authors read and approved 
the final manuscript.

Funding This research was partially supported by the National Key 
Research and Development Program of China (2019YFB1802800).

Data availability Not applicable.

Declarations 

Ethics approval This work does not contain any studies with human 
participants or animals performed by any of the authors.

Consent to participate Not applicable.

Consent for publication Not applicable.

Conflicts of interest The authors declare no competing interests.

References

 1. Adoga UH, Pezaros PD (2022) Network function virtualization 
and service function chaining frameworks: A comprehensive 
review of requirements, objectives, implementations, and open 
research challenges. Future Internet 14(2):59

 2. Balakrishnan H, Banerjee S, Cidon I et al (2021) Revitalizing 
the public internet by making it extensible[J]. ACM SIGCOMM 
Computer Commun Rev 51(2):18–24

 3. Zhao D, Luo L, Yu H et al (2021) Security-SLA-guaranteed 
service function chaining deployment in cloud-fog computing 
networks. Clust Comput 24:2479–2494

 4. Sun G, Xu Z, Yu H et al (2021) Dynamic network function pro-
visioning to enable network in box for industrial applications. 
IEEE Trans Industr Inf 17(10):7155–7164

 5. Sun J, Zhang Y, Liu F et al (2022) A survey on the placement 
of virtual network functions. J Netw Comput Appl 202:1–37

 6. Yi B, Wang X, Li K et al (2018) A comprehensive survey of 
Network Function Virtualization. Comput Netw 133:212–262

 7. Sun G, Zhou R, Sun J et al (2020) Energy-efficient provisioning 
for service function chains to support delay-sensitive applica-
tions in network function virtualization. IEEE Internet Things 
J 7(7):6116–6131

 8. Moens H, Turck F (2016) Customizable function chains: Man-
aging service chain variability in hybrid NFV networks. IEEE 
Trans Netw Serv Manage 13(4):711–724

 9. Fan Q, Pan P, Li X et al (2022) DRL-D: revenue-aware online 
service function chain deployment via deep reinforcement 
learning. IEEE Trans Netw Serv Manag 19(14):4531–4545

 10. Varasteh A, Madiwalar B, Van AB et al (2021) Holu: power-
aware and delay-constrained VNF placement and chaining[J]. 
IEEE Trans Netw Serv Manage 18(2):1524–1539

 11. Jia Z, Sheng M, Li J et al (2021) VNF-based service provision in 
software defined LEO satellite networks[J]. IEEE Trans Wireless 
Commun 20(9):6139–6153

 12. Xuan H, You L, Liu Z et al (2021) HS-MOEA/D: An oriented 
algorithm for delay and reliability VNF-SC deployment. Security 
and Commun Networks 2021:5538931

 13. Zhang B, Fan Q, Zhang X et al (2024) A survey of VNF for-
warding graph embedding in B5G/6G networks. Wirel Netw 
30(5):3735–3758

 14. Montazerolghaem A (2021) Software-defined load-balanced data 
center: design, implementation and performance analysis[J]. Clust 
Comput 24(2):591–610



 Peer-to-Peer Networking and Applications            (2025) 18:0     0  Page 18 of 19

 15. Wang Y et al (2022) Energy-efficient method based on dynamic 
topology switching and reliability in SDNs. IEEE Trans Sustain 
Comput 7(2):427–440

 16. Liu Y, Ran J, Hu H et al (2021) Energy-efficient virtual network 
function reconfiguration strategy based on short-term resources 
requirement prediction[J]. Electronics 10(18):2287

 17. Subramanya T, Riggio R (2021) Centralized and federated learn-
ing for predictive VNF autoscaling in multi-domain 5G networks 
and beyond[J]. IEEE Trans Netw Serv Manage 18(1):63–78

 18. Sun G, Li Y, Liao D et al (2018) Service function chain orchestra-
tion across multiple domains: A full mesh aggregation approach. 
IEEE Trans Netw Serv Manage 15(3):1175–1191

 19. Bertolini M, Mezzogori D, Neroni M et  al (2021) Machine 
learning for industrial applications: A comprehensive literature 
review[J]. Expert Syst Appl 175:114820

 20. Moradi M, Ahmadi M, Nikbazm R (2022) Comparison of machine 
learning techniques for VNF resource requirements prediction in 
NFV. J Netw Syst Manage 30(1):1–29

 21. Wu Y, Zhou J (2021) Dynamic service function chaining orches-
tration in a multi-domain: A heuristic approach based on SRv6[J]. 
Sensors 21(19):6563

 22. Xu L, Hu H, Liu Y et al (2023) SFCSim: a network function vir-
tualization resource allocation simulation platform. Clust Comput 
26:423–436

 23. Li D, Lan JL, Wang P et al (2018) Joint service function chain 
deploying and path selection for bandwidth saving and VNF reuse. 
Int J Commun Syst 31(6):e3523

 24. Sun G, Liao D, Zhao D et al (2018) Live migration for multiple 
correlated virtual machines in cloud-based data centers. IEEE 
Trans Serv Comput 11(2):279–291

 25. Melo M, Sargento S, Killat U et al (2015) Optimal virtual network 
embedding: Energy aware formulation. Comput Netw 91:184–195

 26. Sun G, Anand V, Liao D et al (2015) Power-efficient provisioning 
for online virtual network requests in cloud-based data centers. 
IEEE Syst J 9(2):427–441

 27. Zhao D, Lu Y, Li X, Li Z, Liu Y (2022) Cross-Domain Service 
Function Chain Routing: Multiagent Reinforcement Learn-
ing Approaches. IEEE Trans Circuits Syst II Express Briefs 
69(12):4754–4758

 28. Liu Y, Zhang J et al (2024) Service function chain embedding 
meets machine learning: deep reinforcement learning approach. 
IEEE Trans Netw Serv Manag 21(3):3465–3481

 29. Dietrich D, Abujoda A, Rizk A et al (2017) Multi-provider service 
chain embedding with nestor. IEEE Trans Netw Serv Manage 
14(1):91–105

 30. Migault D, Simplicio MA, Barros BM et al (2018) A frame-
work for enabling security services collaboration across multiple 
domains. Comput Electr Eng 69:224–239

 31. Li G, Zhou H, Feng B et al (2018) Horizontal-based orchestration 
for multi-domain SFC in SDN/NFV-enabled satellite/terrestrial 
networks. China Communications 15(5):87–101

 32. Sun G, Li Y, Yu H et al (2019) Energy-efficient and traffic-aware 
service function chaining orchestration in multi-domain networks. 
Futur Gener Comput Syst 91:347–360

 33. Zhang J, Liu Y, Li Z, Lu Y (2023) Forecast-Assisted Service 
Function Chain Dynamic Deployment for SDN/NFV-Enabled 
Cloud Management Systems. IEEE Syst J 17(3):4371–4382

 34. Sun G, Li Y, Liao D, Chang V (2018) Service Function Chain 
Orchestration Across Multiple Domains: A Full Mesh Aggrega-
tion Approach. IEEE Trans Netw Serv Manage 15(3):1175–1191

 35. Khatiri A, Mirjalily G, Luo QZ (2022) Balanced resource alloca-
tion for VNF service chain provisioning in inter-datacenter elastic 
optical networks. Comput Netw 203:108717

 36. Zhang Q, Liu F, Zeng C (2021) Online adaptive interference-
aware VNF deployment and migration for 5G network slice. 
IEEE/ACM Trans Networking 29(5):2115–2128

 37. Tong Z, Cai J, Mei J et al (2022) Dynamic energy-saving offload-
ing strategy guided by lyapunov optimization for IoT devices. 
IEEE Internet of Things J 9(20):19903–19915

 38. Santos HRF, Ferreira NT, Mattos FMD et al (2022) An effi-
cient and decentralized fuzzy reinforcement learning bandwidth 
controller for multitenant data centers. J Netw Syst Manage 
30(4):1–24

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.



Peer-to-Peer Networking and Applications            (2025) 18:0  Page 19 of 19     0 

Zhiying Wang is a student at the 
University of Electronic Sci-
ence and Technology of China. 
Her research interests  include 
network function virtualization, 
mobile edge computing, deep 
reinforcement learning, Internet 
of Things, and unmanned aerial 
vehicle. 

Guanhua Huang is a student at 
the University of Electronic Sci-
ence and Technology of China. 
His research interests encompass 
network function virtualization, 
deep reinforcement learning, the 
Internet of Things, and  service 
function chaining. 

Gang Sun (Senior Member, IEEE) 
is a full professor of computer sci-
ence with the University of Elec-
tronic Science and Technology 
of China. His research interests 
include network virtualization, 
cloud computing, high perfor-
mance computing, parallel  and 
distributed systems, ubiquitous/
pervasive computing, IoT, and 
blockchain. He has edited special 
issues at top journals, such as the 
IEEE Vehicular Technology Mag-
azine, IEEE Internet of Things 

Magazine, Future Generation Computer Systems and Multimedia 
Tool and Applications. He has served as reviewers of the IEEE Jour-
nal on Selected Area of Communications, IEEE/ACM Transactions 
on Networking, IEEE Transactions on Industrial Informatics, IEEE 
Wireless Communications Magazine, IEEE Transactions on Network 
and Service Management, IEEE Communications Letters, Informa-
tion Fusion, Future Generation Computer Systems, Journal of Network 
and Computer Applications. 

Hongfang Yu (Senior Member, 
IEEE)  received the BS degree 
from the Xidian University, 
in 1996, and the MS and PhD 
degrees from the University of 
Electronic Science and Technol-
ogy of China (UESTC), China, 
in 1999 and 2006, respectively. 
She is  currently a full profes-
sor with the Key Laboratory of 
Optical Fiber Sensing and Com-
munications (Ministry of Educa-
tion), UESTC, and the vice dean 

with the School of Information and Communication Engineering, 
UESTC. Her research interests include data center networking, net-
work function virtualization, software-defined networking, blockchain 
technology, and federated learning. She is an area editor of the IEEE 
Internet of Things Journal, a technical editor of the IEEE Network, an 
associate editor of the IEEE Communications Surveys & Tutorials, 
and Digital Communications and Networks. 

Jian Sun received the BS and MS 
degrees from the University of 
Electronic Science and Technol-
ogy of China, in 1992 and 1998, 
respectively. He is currently a 
senior engineer at the University 
of Electronic Science and Tech-
nology of China, enjoying the 
benefits of a professor-level 
position. His research interests 
include computer communication 
networks, mobile internet, inter-
net of things technology, network 

and information security, big data and data mining, and machine learn-
ing and artificial intelligence. 


	Reinforcement Q-learning enabled energy-efficient service function chain provisioning in multi-domain networks
	Abstract
	1 Introduction
	2 Related work
	3 Problem description and modeling
	3.1 Multi-domain network model with virtualization functions
	3.2 Cross-domain service functional chain demand model
	3.3 Dynamic service function chain deployment model

	4 Algorithm design
	4.1 Q-learning model optimization
	4.2 General algorithm design
	4.3 Hierarchical network reinforcement learning routing module
	4.4 Multi-domain network layering
	4.5 Top-domain Q-learning training algorithm
	4.6 Top-domain Q-learning training algorithm
	4.7 Sub-domain Q-learning training algorithm
	4.8 Sub-domain Q-learning decision algorithm
	4.9 Network energy-saving score module

	5 Simulation results and analysis
	5.1 Simulation environment
	5.2 Performance index
	5.3 Power calculation module
	5.4 Deployment success ratio
	5.5 Profit of network operator
	5.6 Average deployment decision time
	5.7 Energy consumption optimization
	5.8 Influence of the adjustable parameters

	6 Conclusion
	References


