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Abstract— The development of the Internet of Vehicles (IoVs)
has attracted much attention due to the increasing number of
connected cars. IoV refers to the interconnection of vehicles
with other devices through the internet to enable information
sharing and interaction. The advent of 5G mobile communication
technologies has provided high-speed, low-latency, and high-
reliability communication services, which have gone a long
way in solving the communication problems associated with
IoV. Additionally, the Multi-Access Edge Computing (MEC)
technology has placed computing resources on edge nodes closer
to the users, thus enabling faster, more reliable, and more secure
computing services to meet the vehicles’ computing resource
requirements. However, task offloading and resource allocation
issues of 5G-connected vehicles enabled by Mobile edge comput-
ing remain a significant challenge when it comes to computing
tasks and data related to IoVs. Our study proposes a Lyapunov
Based Profit Maximum (LBPM) task offloading algorithm, which
utilizes the Lyapunov optimization theory to maximize the time-
averaged profit as the optimization objective. The algorithm uses
the drift plus penalty optimization framework to establish the
Lyapunov function and transforms the optimization goal into
making a reasonable offloading decision at each time slot to
optimize the upper bound of the function. We also compare
the LBPM algorithm with existing algorithms for simulation
experiments and performance analysis. The experimental results
indicate that the LBPM algorithm increases the time-averaged
profit by over 15%.

Index Terms— Internet of Vehicles, multi-access edge comput-
ing, task offloading, resource allocation.

I. INTRODUCTION

IN THE current age of 5G mobile communications, the
number of Internet of Things (IoT) devices is witnessing

a substantial increase, and various communication platforms
are being interconnected. The IoT is gaining traction and its
widespread adoption is just around the corner. The IoT is
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bringing about a revolutionary change by introducing intelli-
gent concepts into various existing fields, including intelligent
medical services, smart homes, intelligent industry, intelligent
communities, and intelligent transportation systems [1].

With the onset of the IoT era, wireless communication
technologies and task offloading have undergone rapid devel-
opments. The development of the Internet of Vehicles (IoVs)
has become a pressing requirement to address the emerging
needs of mobile internet, encompassing automatic driving,
intelligent transportation, and safety warning systems [2].
The IoV has evolved from traditional connected vehicles,
transitioning from mere connectivity to a more comprehensive
ecosystem. IoV is an emerging paradigm driven by the latest
advances in vehicle communication and networking. Vehicles
are equipped with sensors, LiDAR, and other devices to collect
environmental data around them. They also have on-board
computers and other computing resources to process IoV
tasks and use wireless devices to achieve communication and
information exchange between vehicles [3]. At this point, the
limited resources present major hurdles in the development
of the next IoV generation. Some studies have utilized cloud
computing to address the limited vehicles’ computational
resources [4]. However, due to the real-time requirements
of certain mission-critical tasks such as emergency obstacle
avoidance and road state recognition, which demand minimal
computational latency, cloud-based approaches are not suit-
able. This is because cloud centers are typically located far
from the vehicles. In order to tackle these challenges, edge
computing offers a solution by providing closer and more
abundant resources [5].

However, these tasks are mostly computationally intensive
or time-sensitive, and the computing resources on board
vehicles are unable to meet the demands. Due to the commu-
nication characteristics of 5G, accessing external computing
resources for connected vehicles has become very convenient.
Therefore, Multi-access Edge Computing (MEC) technology
significantly tackles the challenge of slow computation by
extending cloud computing capabilities to the edge of wire-
less access networks, allowing vehicles to make real-time
decisions and take prompt actions. MEC utilizes task par-
titioning and offloading techniques to enhance performance
and establish a shared infrastructure, enabling nearby mobile
devices to mutually exchange surplus resources as required [6].
However, the emphasis on resource sharing motivation has
been relatively limited in recent years. We consider edge
clouds as Resource Providers (RPs) and mobile devices as

1558-0016 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on June 27,2024 at 02:14:12 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-2448-8915
https://orcid.org/0000-0002-5219-1780
https://orcid.org/0000-0002-8972-8094


2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

resource-demanding users. The primary objective of resource
sharing is to maximize the economic benefits that RPs can
derive from each service, while ensuring users’ Quality Of
Experience (QoE). Consequently, it is vital to devise a profit
maximization incentive mechanism for RPs. Furthermore, the
distinct characteristics of economic markets, particularly in an
open environment like MEC, must be taken into account. Com-
petition plays a crucial role in the MEC network, and providers
offering a higher processing capacity at lower prices are more
likely to attract a larger user base. Hence, it is imperative to
match RPs with suitable users within a competitive setting.

Building upon the foundation of connected vehicles and the
assistance of MEC, the landscape of the IoV has witnessed
remarkable progress. This evolution is notably propelled by
the strides in 5G technology, where the convergence of
enhanced Mobile Broadband (eMBB), massive Machine-Type
Communication (mMTC), and Ultra-reliable and Low-Latency
Communication (URLLC) within MEC-based IoV scenarios
has played a pivotal role in accelerating the IoV development
[7]. But at the same time, a critical issue arises in the context
of 5G-connected vehicles. This issue revolves around resource
sharing and competition with other vertical applications that
also rely on the same public physical infrastructure. To address
this challenge, a well-balanced resource allocation approach
becomes necessary. Such an approach should take into account
the diverse data requirements from different vertical appli-
cations. The primary goal is to design an efficient network
that not only ensures reliable service quality for 5G-connected
vehicles but also caters to the data service needs of other
vertical applications.

The main contributions of this paper are as follows:
• A mathematical model is developed to address the task

offloading problem of offloading independent tasks from
vehicles to MEC in the 5G URLLC with IoV scenarios.
For MEC providers, profit is the primary optimization
goal, and the objective is to maximize the average profit
of MEC providers.

• We propose the LBPM task offloading algorithm for MEC
collaborative computing, based on Lyapunov optimization
theory. The algorithm establishes a Lyapunov function
using the drift plus penalty optimization framework,
to make rational offloading decisions in each time slot.

• In order to adapt to varying task lengths in the IoV,
we enhance the proposed algorithm by expanding its
capability to handle variable-length tasks by processing
them in one decision unit, allowing for the allocation of
multiple tasks simultaneously, and preventing the CPU
idle time due to the slow task allocation speed.

• We conduct experiments comparing the LBPM algorithm
with existing algorithms, and the results show that the
LBPM algorithm increased the average profit by more
than 15% over the existing algorithm.

The remainder of this paper is organized as follows.
Section II reviews the related work and show the motivation
of our research. Section III presents the system model, which
consists of the physical network model and the task model, and
establishes the optimization objectives. Section IV introduces
the proposed method based on Lyapunov optimization theory

to solve the studied problem. In Section V, we conduct exten-
sive simulations and analyze the results. Finally, Section VI
concludes this paper.

II. RELATED WORK

A. Resource Allocation for MEC-Enabled IoV

In the context of vehicular networks, resource allocation
issues have been the focus of numerous studies. [8] addresses
resource consumption holistically within the fog environment
at the data processing layer. It allocates diverse tasks to sensing
vehicles and filters redundant information at relay nodes along
routing paths to optimize resource utilization and minimize
wastage in the IoV. For instance, [9] proposes an approach
to reduce task delay by optimizing the available bandwidth
allocation in vehicular fog computing systems. The solution is
obtained in two steps based on the requirements of the service
method: 1) finding a suboptimal solution using the Lagrange
algorithm, and 2) performing a selection process to obtain the
optimal solution.

Another approach is to utilize parked vehicles as auxiliary
fog computing nodes to reduce the rejection rate of service
requests, as proposed in [10]. A new load balancing strategy
is also introduced to optimize the utilization of computing
resources. [11] proposes an iterative algorithm to obtain the
optimal solution and a two-stage heuristic algorithm to obtain
an approximate optimal solution by offloading tasks to edge
servers or vehicles and allocating wireless resources of base
stations and computing resources of servers to minimize task
processing delays for all devices.

MEC’s effectiveness is limited in areas with poor server
coverage, and there are many idle computing resources in
peripheral vehicles. The author proposes a distributed mul-
tihop task offloading decision model that includes a candidate
vehicle selection mechanism and a task offloading decision
algorithm to improve the task execution efficiency [12]. The
authors propose a strategy to tackle the energy consumption
and computation costs in vehicular networks by employing
traffic offloading and scheduling. Their proposed approach
utilizes quantum particle swarm optimization to optimize the
joint offloading strategy in mobile edge computing-enabled
vehicular networks, thereby enhancing the QoE [13].

While the proposed solutions show promise for addressing
resource allocation issues in vehicular networks, there is still a
need for further research to evaluate their practicality, address
limitations, and consider network security and privacy issues.

B. Minimization of Task Processing Latency in MEC

Numerous studies have been conducted to address the chal-
lenge of minimizing execution delay and energy consumption
while ensuring that the task Service Level Agreement (SLA)
is met.

One approach is to use a one-dimensional search method,
as demonstrated in [14]. It aims to identify the optimal
offloading strategy that can minimize execution delay. Another
study, as mentioned in [15], introduces a priority-based task
scheduling algorithm (PBTSA) designed to minimize process-
ing delays when tasks are interdependent. PBTSA effectively
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measures data transmission and computation delays in IoV
networks.

Reference [16] takes a slightly different approach by for-
mulating an energy optimization problem, taking into account
the delay constraints and user mobility in application require-
ments. The authors use Dijkstra algorithm to minimize energy
consumption. By balancing energy consumption and delay, this
approach can help to meet the SLA requirements.

The authors in [17] propose a low-latency edge caching
method to improve content caching efficiency and reduce
user access latency in the edge network. They establish a
cache model based on base station cooperation and consider
the delay in different transmission modes. By transforming
the problem of minimizing latency into a maximizing cache
reward problem, they use a greedy algorithm to obtain the
optimal strategy. [18] proposes a game-theoretic scheme for
joint mode selection and power adaptation, considering the
transmission requirements of multi-priority packets in various
vehicular applications, where higher-priority packets face more
stringent latency constraints.

Many studies have been conducted to minimize execution
delay and energy consumption while meeting the SLA of tasks.
However, these studies have limitations, such as focusing on
only one aspect of the problem, using simulations that may
not reflect real-world scenarios, and lacking comprehensive
evaluations.

C. Maximization of MEC Provider’s Profit

There is an abundance of research focused on the optimiza-
tion of the energy efficiency in smart IoV, maximizing the
probability of offloading to the best server, minimizing the
total offloading delay and so on [19], [20], [21], and [22].
Optimizing system costs [23] and load balancing [24] are also
often focused on. However, there has been comparatively less
work dedicated to develop incentive mechanisms for mobile
cloud computing and mobile edge cloud computing [25], [26],
[27], [28], [29]. Within the limited studies that do exist, most
incentive mechanisms are based on pricing strategies.

Mobile edge computing applications in the IoV have dif-
ferent optimization objectives. In one study [19], the authors
aim to maximize the average energy efficiency of electric
vehicles. They achieve this by jointly optimizing the CPU
frequency, vehicle transmitting power, computing tasks, and
uplink rate. Another study [20] addresses the offloading order
decision problem using the principle of Optimal Sub-task
Transmission (OST). This approach divides structured tasks
into sub-tasks and executes them sequentially to maximize the
probability of offloading to the best server while minimizing
the total offloading delay. Reference [23] investigates system
performance by considering a linear combination of latency
and energy consumption. The authors derive an analytical
offloading ratio by minimizing the overall system cost. Finally,
in [24], an algorithm based on Multi-Agent Deep Q-Network
(MADQN) is introduced to effectively solve the NP-hard
problem related to controller placement. The algorithm takes
into account various objectives such as latency, load balancing,
and path reliability.

Several studies have explored market models and pricing
schemes for big data and the IoT. Niyato et al. conducted
a study [28] where they proposed a market model involv-
ing sensors, data sources, service providers, and consumers.
They used a Stackelberg Game approach to maximize the
profit of data sources. Zhang [25] proposed a data offloading
approach that combined coalition formation and pricing mech-
anisms to coordinate data offloading between mobile devices
(MDs) and MEC servers. Zhao et al. [26] investigated the
optimal provisioning of computational resources in the edge
cloud, analyzing Nash equilibrium prices and developing an
algorithm to optimize edge computational resource capacity.

However, while there has been a considerable amount of
research focused on offloading, resource allocation, and task
partitioning in mobile cloud computing and mobile edge cloud
computing, the development of incentive mechanisms beyond
pricing strategies has been relatively limited.

D. Lyapunov Optimization Theory

Reference [30] formulates a problem of allocating edge
storage and computing resources using Lyapunov optimization
theory, matching theory, and other optimization methods to
jointly optimize service caching, service request offloading,
and resource allocation, thus minimizing the average response
delay of services. Reference [31] proposed a time-dynamic
optimization problem under network reallocation rate con-
straints, solved using Lyapunov optimization theory to further
reduce computational complexity. Reference [32] allocated
transmission power and CPU cycles based on Lyapunov
optimization theory to minimize processing delay. In [33],
a partial offloading scheduling scheme for multiple mobile
devices in MEC systems was studied. Models were established
for local computation and energy harvesting processes of
MEC and mobile devices. A non-convex optimization problem
was formulated to minimize the energy consumption of all
mobile devices while meeting delay constraints. Lyapunov
optimization theory was then applied to achieve the optimal
solution.

However, a notable gap in the existing research is the lack
of consideration for the perspective of the service provider or
operator. Notably, this paper distinguishes itself by adopting
a Lyapunov algorithm to maximize profits from the viewpoint
of the operator. This unique approach provides a novel con-
tribution, offering a comprehensive perspective that considers
profit maximization in the context of edge computing while
ensuring the fulfillment of SLA.

To enhance our analysis and comparison to approaches
available in the literature, we refer to Table I. This table con-
centrates on evaluating several critical criteria, including the
application of Lyapunov optimization, management of tasks
with variable lengths, adherence to Service Level Agreements
(SLA), optimization of average profit, implementation of a
time slot model, and consideration of long-term constraints.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we firstly describe the MEC-enabled
cooperative vehicular networking architecture. Subsequently,
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TABLE I
COMPARISON OF RELATED WORK

Fig. 1. MEC-enabled IoV architecture.

we introduce the physical network model used for communica-
tion and task transfer between mobile edge computing nodes,
as well as the task model used for offloading tasks to the MEC.
Finally, we propose optimization goals aim at maximizing the
time-averaged profit for MEC providers.

A. System Model

In the context of task offloading in the 5G vehicular network
enabled by MEC, MEC is generally integrated with commu-
nication base stations as edge computing resources. However,
as shown in Figure 1, vehicles communicate with base stations
using cellular networks, and although computation tasks can
be offloaded to MEC, the randomness of vehicle trajectories
and task generation lead to spatio-temporal imbalances in
computing resource requirements. In other words, the com-
putational resource demand for tasks offloaded to a specific
MEC at a certain time may exceed the computing capacity
provided by that MEC, which could result in some tasks
violating SLAs and providing a poor user experience. On the

other hand, the tasks offloaded to another MEC may be few,
resulting in low MEC load and idle computing resources,
leading to energy consumption issues. Due to the use of
optical fiber links for communications between base stations
and the large communication bandwidth and low transmis-
sion delay between MECs, in such communication network
environment, the spatio-temporal imbalances in computing
resource demand can be addressed through collaborative task
computation between MECs.

B. Physical Network Model

The physical network is responsible for communication and
task transfer between MEC servers, which typically consists
of a set of MEC servers and physical network links integrated
into the base station. Each MEC server is equipped with
a certain amount of computing resources to process tasks.
As this paper focuses on the task offloading algorithm between
MEC servers, the network between the IoVs and MECs is
ignored for the purposes of this study.

The physical network can be represented as G = (M, E),
where M =

{
m1, m2, . . . , m|M |

}
is a collection of MEC

servers in the physical network. Each MEC server m is
associated with a compute frequency fm . On the other hand,
E =

{
e1, e2, . . . , e|E |

}
represents the set of network links.

Since the links are generally fiber connections between base
stations, we ignore the physical network delay between MECs
in this study. Where, |M | and |E | respectively denote the
number of nodes and links in the network.

C. Task Model

In this paper, we focus on independent and typed tasks,
where the smallest task unit offloaded by the user to MEC
can be represented as T askk,r =

(
dk,r , pr , sr

)
. Where, k ∈ K

represents the set of task types, and r ∈ R represents the set of
tasks of a certain type. The computing resource requirement
of a task is denoted by d , which is the total number of CPU
clock cycles required to complete the task. The fee charged
by MEC for executing type k task for a user is represented
by pk .
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TABLE II
KEY NOTATIONS USED IN THIS PAPER

If the number of tasks offloaded to the MEC exceeds its
computing capacity, the tasks may violate the SLA. Hence,
we propose the task age agek,r , as shown in Equation (1).
This represents the time duration for which a task segment
has been active from its initiation until the current time slot.
When the agek,r reaches sk , MEC will transfer the task to a
remote cloud for execution. However, when agek,r < sk , the
task will still be cached in the local task queue of MEC.

agek,r = (T now
− T begin

k,r + 1)δt (1)

This paper employs non-preemptive offloading for executing
computing tasks on MEC. Non-preemptive offloading ensures
that computing resources are only released when the currently
executing task is completed, and other pending tasks can then
be offloaded for computation. This approach avoids frequent
task switching and reduces additional time overhead. Although
preemptive offloading can make more flexible use of the
CPU and improve computing resource utilization, it results
in additional time overhead due to frequent task switching.
Since MEC has more computing resources, the execution time
of tasks offloaded from vehicular networks is shorter, and the
system gain ratio of preemptive offloading will be reduced
accordingly, and the proportion of additional time overhead
will increase. Therefore, non-preemptive task offloading is
used in this paper.

Fig. 2. LBPM algorithm architecture.

D. Problem Formulation

We use a time slot model: T = {1, 2, . . . , t, . . . , |T |}.
At time slot t , when MEC starts executing a task of type
k, MEC charges the user a fee of pk . Therefore, the profit of
the MEC provider in time slot t can be represented as:

P(t) =

∑
k

pkck(t) − α
∑

m

λ f 3
m Tslot (2)

ck(t) represents the number of tasks of type k assigned to
MEC to execute at time slot t . λ denotes the energy coefficient
of MEC, and α represents the electricity price of 1 Joule for
MEC operation. Tslot is the length of time slot. Therefore, the
profit of all MECs in time slot t is the fee charged to users
minus the energy cost of MECs.

The MEC provider is intended to maximize the profit of
time averaging, which is the optimization goal of this paper.

P(t) ≜ lim
T →∞

sup
1
T

T −1∑
t=0

E {P(t)} (3)

The Formula (3) is a multi-stage stochastic bipartite graph
maximum matching problem, but with the random arrival of
task data, it is challenging to satisfy long-term constraints
while making decisions within each time slot. Moreover, the
consecutive arrived tasks require real-time decision-making
in each slot. Therefore, in the following text, we propose a
new Lyapunov-based approach for maximizing time-averaged
profit, which addresses Formula (3) with high robustness and
efficiency.

IV. ALGORITHM DESIGN

The problem description in the previous section high-
lights the importance of task offloading algorithms for
MEC providers. To this end, this paper proposes an MEC-
interdependent task offloading algorithm, called LBPM, based
on Lyapunov optimization theory. The algorithm comprises
two stages, as illustrated in Fig. 2.

The first stage involves MECs receiving tasks offloaded by
users and transferring tasks that may violate the SLA to the
remote cloud for execution. The second stage entails each
MEC transmitting all task metadata T aski = (d, k) in the local
task queue to the central MEC. The central MEC updates the
Lyapunov queue QK (t) of all types of tasks, makes decisions
based on Lyapunov optimization theory, and performs task
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Fig. 3. The process of task scheduling decisions and results for a time slot. (a) Before the slot t . (b) After the slot t . (c) Before the slot t + 1.

offloading and collaborative computing between MECs based
on the decision results.

A. The Lyapunov Queue

At time slot t , each MEC checks its local task queue for any
tasks whose age agek,r has exceeded the SLA threshold sk .
If so, the task is transferred to the remote cloud for execution;
otherwise, it remains in the local queue. Simultaneously, the
user offloads new tasks onto the MEC network, and each MEC
caches these tasks in its local task queue. The MECs then
transmit all task metadata T aski = (d, k) for the tasks in
their local task queues, as well as for any tasks transferred
to the remote cloud, to the central MEC. The central MEC
uses Lyapunov optimization theory to establish and maintain
a Lyapunov queue for each type of task.

Qk(t + 1) = max

Qk(t) − bk(t) − bk(t−) −

Gk(t)∑
r=1

ωk,r , 0


+

ak (t)∑
r=1

ωk,r (4)

ωk,r =

⌈
dk,r

fmin ∗ Tslot

⌉
(5)

b(k,r),m = ωk,r −

⌈
dk,r

fm ∗ Tslot

⌉
(6)

bk(t) =

∑
r

∑
m

b(k,r),m (7)

ak(t) represents the number of type k tasks that have been
received and stored in the local queue by all MECs until time
slot t , and Gk(t) represents the number of type k tasks that
have been transmitted to the remote cloud for execution by
all MECs until time slot t . ωk,r is the number of time slots
required for the MEC with the lowest computing frequency in
the k type Lyapunov queue to compute the r -th task. b(k,r),m is
the gain in the number of time slots brought to the Lyapunov
queue Qk(t) by offloading T askk,r to be executed by MEC m.
Therefore, bk(t) is the total gain in time slots brought to the
Lyapunov queue Qk(t) by the offloading results of time slot t .
bk(t−) is the gain brought to Qk(t) by all tasks currently being
executed due to the change of time slot. In summary, according
to the time slot model, the Lyapunov queue maintains the time
slots of the queue tasks minus the time slot gains of tasks in
progress at time t−, the time slot gains brought by decisions

made at time t , the time slots of remote cloud computed tasks
at time t , plus the time slots of tasks arriving at time t .

For example, if at time slot t , T askk,r is offloaded to be
executed by MEC m, which is expected to take 5 time slots,
i.e.,

⌈
dk,r/ fm/Tslot

⌉
= 5. Then, at time slot t+1, bk,r (t−) = 1,

and bk(t−) is the number of tasks being executed at that time.
To better illustrate the changes in the Lyapunov queue Qk(t)

resulting from task offloading decisions, Fig. 3 presents an
example of online task scheduling. The figure consists of
three sub-figures representing different system states during
various time slots of the task offloading process. Each sub-
figure shows the Lyapunov queue of a task type at the central
MEC, Each small square represents a time slot. two MECs
with their respective computing frequencies, where the lowest
computing frequency within the MEC range is fmin = 1.

Fig. 3a illustrates the state of the physical network and
Qk(t) before the initial decision at time slot t . The taskk,2
requires 3 time slots and the taskk,1 requires 4 time slots for
processing locally. At this point, Qk(t) contains unoffloaded
tasks T askk,1 and T askk,2, a set of idle MECs mecidle =

{mec1, mec2}, and a set of busy MECs mecbusy = {}.
Fig. 3b displays the state of the physical network and

Qk(t) after the initial decision at time slot t . T askk,1 is
offloaded to execute on mec1, and the number of time slots
for T askk,1 in Qk(t) changes from 4 to 2. This is because⌈

dk,1/ fmin/Tslot
⌉

= 4 and
⌈

dk,1/ f1/Tslot
⌉

= 2, indicating
that offloading T askk,1 to mec1 and executing it brings a time
slot gain of b(k,1),1 = 2 to the Lyapunov queue Qk(t). The
change for offloading T askk,2 to execute on mec2 is similar.
The set of idle MECs is mecidle = {}, and the set of busy
MECs is mecbusy = {mec1, mec2}.

Fig. 3c shows the state of the physical network and Qk(t)
before a new round of decisions at time slot t + 1. Since
bk,1(t−) = bk,2(t−) = 1,

⌈
dk,1/ f1/Tslot

⌉
− bk,1(t−) = 1,

indicating that mec1 still needs 1 time slot to execute T askk,1.
Furthermore,

⌈
dk,2/ f2/Tslot

⌉
− bk,2(t−) = 0, showing that

mec2 completed T askk,2 in the previous time slot t . The set
of idle MECs is mecidle = {mec2}, and the set of busy MECs
is mecbusy = {mec1}.

After establishing the Lyapunov queue, the optimization
objective is:

max : P(t) (8)
s.t. 0 ≤ ak(t) ≤ amax

k , ∀k ∈ K , t ∈ T (9)
0 ≤ Gk(t) ≤ Gmax

k , ∀k ∈ K , t ∈ T (10)
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0 ≤ ck(t) ≤ cmax
k , ∀k ∈ K , t ∈ T (11)

0 ≤ ωk,r ≤ ωmax
k,r , ∀k ∈ K , r ∈ R (12)

0 ≤ bk(t) ≤ bmax
k , ∀k ∈ K , t ∈ T (13)

0 ≤ bk(t−) ≤ bmax
k (t−), ∀k ∈ K , t ∈ T (14)

lim
T →∞

1
T

T −1∑
t=0

E {ak(t)} < lim
T →∞

1
T

T −1∑
t=0

E
{
bk(t) + bk(t−)

+Gk(t)} , ∀k ∈ K , t ∈ T (15)

Formula (9) - Formula (14) ensure that the relevant variables
are positive and do not exceed the maximum set threshold.
Formula (15) ensures the stability of the task queue Qk(t)
and ensures that the average arrival rate is not greater than the
average departure rate.

B. Task Offloading Algorithm

To maximize the time-averaged profit for each time slot,
we adopt the drift-plus-penalty framework from the Lya-
punov optimization theory. It can transform a long-term
time-average optimization problem into a series of similar
one-shot optimization problems. We use the queue vector
2(t) = [Q1(t), Q2(t), Q3(t), . . .] to represent the queue of
all task types. The Lyapunov function is defined as follows:

L (2(t)) =
1
2

∑
k

Qk(t)2 (16)

1 (2(t)) = E {L (2 (t + 1)) − L (2(t)) | 2(t)} (17)

The Formula(17)represents the expected change of the Lya-
punov function within a single time slot.

1 (2(t)) − V P(t) (18)

Reference [34] introduces a drift-plus-penalty framework in
Lyapunov optimization, where Equation (18) is the objective
function used for network performance optimization. V is
a non-negative parameter, which is used to make a trade
off between stabilizing the queue length and maximizing the
profit. A higher value of V tends to prioritize profit, which
may lead to a longer queue and a lower system stability.
A lower value of V leans towards maintaining queue stability,
even though this might sacrifice some profit. Selecting an
appropriate value for V is crucial for achieving the goals of
established system performance and economic efficiency.

According to the Lyapunov optimization theory, we can
implement the optimization objective Formula (8), which is to
minimize the upper bound of Formula (18). The upper bound
of Formula (18) can be calculated as follows:

1 (2(t)) − V P(t) ≤ H +

∑
k

Qk(t)
ak (t)∑
r=1

ωk,r − V
∑

k

pkck(t)

+ V α
∑

m

λ f 3
m Tslot

−

∑
k

Qk(t)
[
bk(t) + bk

(
t−

)]
−

∑
k

Gk (t)∑
r=1

Qk(t)ωk,r (19)

H =

∑
k

[(
ωmax

k,r · amax
k

)2
+

(
bmax

k +bmax
k

(
t−

)
+ωmax

k,r · Gmax
k

)2
]

(20)

where H is a constant unrelated to optimization.
This paper introduces an algorithm designed to minimize

the Right-Hand Side (RHS) of Equation (19), which is the
upper bound of Equation (18). By doing so, the algorithm
maximizes the lower bound of P(t). At each time slot, the
algorithm determines the optimal values of ck(t) and bk(t) by
solving the following optimization problem. This problem is
based on the Lyapunov task queue Qk(t), newly arrived task
ak(t), idle MECs, and executing MECs.

min : RH S of (19) (21)
s.t. Constraints (9)-(15)

By removing the fixed value, Equation (21) can be simpli-
fied to the following formula:

min : V α
∑

m

λ f 3
m Tslot −

∑
k

Qk(t)bk(t) − V
∑

k

pkck(t)

(22)

Furthermore, we model Equation (22) as the following
optimization problem:

min :

∑
k,r

∑
j

w(k,r), j x(k,r), j (23)

s.t. w(k,r), j = V αλ f 3
j Tslot − Qk(t)b(k,r), j − V pk,

∀k ∈ K , r ∈ R, j ∈ M (24)
x(k,r), j ∈ {0, 1} , ∀k ∈ K , r ∈ R, j ∈ M (25)∑
k,r

x(k,r), j ≤ 1, ∀k ∈ K , r ∈ R, j ∈ M (26)∑
j

x(k,r), j ≤ 1, ∀k ∈ K , r ∈ R, j ∈ M (27)

The Formula (23) represents the optimization objective for
0-1 integer programming problem with x(k,r), j as the decision
variable. The Formula (24) defines the value and meaning of
the coefficient w(k,r), j , which is associated with the variable
x(k,r), j . The Formula (25) specifies that x(k,r), j is a binary
variable, where x(k,r), j = 1 indicates that the r th task in the
kth Lyapunov queue type is offloaded and executed on MEC
j . Formula (26) ensures that at most one task can be executed
on a MEC at a given time, and Formula (27) guarantees that
each task can be executed on only one MEC and cannot be
preempted.

In Fig. 4, the Lyapunov queue Qk(t) for all types of tasks
is maintained by the central MEC. The set of idle MECs
mecidle is then updated, and the weight w(k,r), j is calculated
for each task T askk,r offloaded on each MEC j . The weight
is computed using the formula w(k,r), j = V αλ f 3

j Tslot −

Qk(t)b(k,r), j − V pk , and is used to build the benefit matrix.
The Hungarian Algorithm [35] can be applied to solve the
benefit matrix. Thus, Formula (23) can be regarded as a
matching problem between T askk,r and MEC j , and can be
solved using the Hungarian Algorithm.
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Fig. 4. Task matching in MEC.

Algorithm 1 Lyapunov-Based Profit Maximization (LBPM)
Task Offloading
Input: M , allT ask, (k, pk, sk), V , λ, Tslot
Output: Profit for all time slots all Prof i t

1: Initialization: t = 0, chargem = None, quem,k , Qk(t).
2: while t < |T | or Qk(t) ̸= 0 do
3: Initialize current time slot profit prof i t (t) = 0;
4: Tasks are offloaded to MEC, update quem,k ;
5: Transfer tasks with agek,r > sk to remote cloud, update

quem,k ;
6: Initialize set of idle MECs mecidle ;
7: Update Qk(t) ;
8: Construct benefit matrix using Equation (24) ;
9: Use Hungarian Algorithm to obtain assignment results

x(k,r), j ;
10: for x(k,r), j do
11: if x(k,r), j = 1 and w(k, r), j > 0 then
12: Remove x(k,r), j from assignment results i.e.

x(k,r), j = 0;
13: end if
14: end for
15: Update prof i t (t) ;
16: Update chargem ;
17: Record prof i t (t) to all Prof i t ;
18: t = t + 1;
19: end while
20: return all Prof i t .

Based on the above analysis, we propose the Algorithm 1.
The Line 1 of the algorithm represent the initialization process
of the algorithm at time slot t = 0. Each MEC has a local
task cache list quem,k , and all MECs are set to be idle at the
beginning of the current time slot. The central MEC initializes
Lyapunov queues for all types of tasks. Lines 4 to 5 represent
the scenario when a new task is offloaded to an MEC. The
new task is cached to the local task queue, and the queue is
traversed to check if agek,r > sk for each task. If true, the
current task is transmitted to a remote cloud for execution
and then deleted from the queue. Line 6 establishes an idle
MEC set mecidle based on the chargem of each MEC. Line 7
represents the update of the Lyapunov queue Qk(t) for each
MEC based on the local task meta-information. Lines 8 to 9
model the optimization objective (22) as an optimal matching

problem, set the matching edge weight using Equation (24),
and then use the Hungarian algorithm to solve the optimization
objective (23) and obtain the task allocation result x(k,r), j .
Lines 10 to 14 delete x(k,r), j = 1 and w(k,r), j > 0 from the
allocation result to minimize Equation (22). Line 15 updates
the current time slot profit all Prof i t based on the task
offloading result x(k,r), j . Line 16 updates the chargem of
each MEC, and if a task is completed, the chargem is set to
Null. Line 17 records the current time slot profit in all Prof i t .

C. Algorithm Complexity Analysis

We analyze the time complexity of the LBPM algorithm
as follows: In Line 5, we need to traverse the local task
queue of each MEC, which results in a complexity of
O

(∑
m,k quem,k

)
. In Line 6, we initialize the set of idle

MECs, which has a complexity of O(|M |). In Line 7, the
central MEC updates the Lyapunov queue Qk(t), which has
a complexity of O

(∑
m

∑
k quem,k

)
. In Line 8, we use

Equation (24) to construct the utility matrix, which has a
complexity of O

(
|M |

∑
m

∑
k quem,k

)
. In Line 9, the com-

plexity is O
(
max{|M |,

∑
m,k quem,k}

3) due to the use of the
Hungarian Algorithm for solving the optimization problem.

Based on the above analysis, we can see that the overall
computational complexity of the LBPM algorithm for task
offloading is shown in Formula (28).

O

 T∑
t=0

max{|M |,
∑
m,k

quem,k}
3

 (28)

V. SIMULATION RESULTS AND ANALYSIS

In this section, we first introduce the key parameters used
in our experiments and then compare our proposed LBPM
algorithm with existing algorithms.

A. Simulation Environment and Parameters

To simulate the LBPM algorithm proposed in this paper
and the comparison algorithms, we utilized Python within the
PyCharm environment to construct the network infrastructure
for our simulation of resource scheduling in MEC-assisted
IoV. The task computation requirement is randomly selected
from a range of (300, 600) MHz, following similar approaches
as in [36] and [37], while the MEC computation frequency
is randomly selected from a range of (6, 18) GHz, similar
to [38] and [39]. The energy consumption coefficient is set to
λ = 10−26, which is related to the CPU architecture of the
MEC server. According to the [40], the electricity price for
Chinese enterprises in June 2022 was 0.093 $/kWh, so we
set α = 2.61 × 10−11 $/J. The fees that users need to
pay MEC providers to successfully offload tasks are set to
(7.83 × 10−7, 1.566 × 10−6) $. The y-axis in the following
simulation figures represents the multiple of unit profit, where
the unit profit is α = 2.61 × 10−11 $. Hence the unit of profit
is set to US dollars. This meticulous alignment ensures a more
faithful representation of the environment in our simulation.

Under the above parameter settings, we conducted a small-
scale accuracy test on the proposed algorithm in this paper.
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TABLE III
PARAMETERS USED IN OUR SIMULATIONS

Taking Figure 3 as an example, before time slot t , the
algorithm’s offloading decision is to offload taskk,1 to mec1.
We manually calculated the decision’s metric w(k,r), j based
on the Formula (24), and due to the ceiling function, the calcu-
lated w(k,r), j for this offloading decision is larger. Therefore,
it is considered the optimal decision. The calculation results
after time slot t are the same, as the w(k,r), j values for
different offloading decisions are equal, so default sequential
offloading is applied. Before time slot t +1, since only taskk,1
remains, and the effects of the two MECs are the same,
offloading to mec1 is defaulted. Experimental results have
shown that the algorithm’s decision matches the manually
calculated optimal solution in small-scale scenarios. Therefore,
the accuracy of this algorithm is reliable.

We set the number of task types |K | = 5, the number of
task offloads per time slot ak(t) ∈ (15, 25), the processing
time sk ∈ (3, 5)s, time slot length Tslot = 1s, number of
MECs |M | = 50, and total number of time slots |T | = 200.
The Lyapunov balancing factor is V = 1 × 10−4. The above
parameters are summarized in Table III.

We choose the CGTAS algorithm [41], the MGW
algorithm [42] and the MSCPC algorithm [43] as the com-
parison algorithms. The CGTAS combines each task with
each MEC to obtain a weight value. The combinations
are then sorted according to the weight value, and the
sequence is traversed. If a task in a combination has not
been offloaded and an MEC has not been assigned, then
this combination will be used to offload the task to this
MEC. The MGW is a modified guided-population-archive
whale-optimizer-based cloudlet deployment and task offload-
ing algorithm. The MSCPC is a MSCP optimization algorithm
based on the chop-up-and-update algorithm, which finds the
optimal solution by constantly splitting unfinished tasks or idle
MECs.

B. Simulation Results and Analysis

In the process of comparing the performance of the algo-
rithms, we focus on performance indicators such as the average
profit of the MEC provider over time and the completion time
of all tasks.

Fig. 5. Time-averaged profit under different V values.

Firstly, in order to study the impact of the trade off factor
V on the time-averaged profit within the drift-plus-penalty
framework of Lyapunov optimization theory, as shown in
Figures 5, this experiment was conducted by generating a
random offloading task once and then utilizing the LBPM
algorithm enabled by different values of the trade off factor
V , to observe the distribution of the time-averaged profit for
MEC providers. As V increases from 10−7 to 10−4, there’s
a noticeable upward trend in the time-averaged profit which
starts to plateau as it approaches 10−4. The steepness of
the curve before it levels off shows how sensitive the time-
averaged profit is to changes in V . The plateau suggests
there’s an optimal range of V values where the profit is
maximized without further significant gains from increasing
V . Therefore, under the parameter settings environment of the
previous subsection, V is set to 1 × 10−4.

To evaluate the performance of the LBPM algorithm
proposed in this paper in terms of the MEC provider’s
time-averaged profit, multiple experiments with the same
parameters were conducted, and different offloading tasks
were randomly generated each time. The simulation results
are presented in Fig. 6. The horizontal axis represents the
experiment sequence, the vertical axis of the upper graph
represents the time-averaged profit, and the vertical axis of
the bottom graph represents the optimization rate of the LBPM
algorithm relative to the comparison algorithms.

From the Fig. 6, the LBPM algorithm significantly outper-
forms CGTAS and MGW, while showing a slight superiority
over MSCPC. Time-averaged profits for LBPM and MSCPC
range mainly between 1.6×106 and 2.8×106 units. In contrast,
CGTAS and MGW profits are concentrated between 3 × 105

and 1.4 × 106 units. LBPM’s time-averaged profit is notably
higher, with an optimization rate exceeding two times that of
CGTAS and MGW. Compared to MSCPC, LBPM achieves an
optimization rate of approximately 15%. This is because the
LBPM algorithm uses a drift and penalty framework, which
has a good effect on the time-averaged optimization objective.

To evaluate the performance of the algorithms regarding
the MEC provider’s profit in each time slot, an experiment
was conducted to investigate the distribution of profits in each
time slot. A random offloading task was generated, and the
results were calculated and analyzed. The simulation results
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Fig. 6. Time-averaged profit and optimization rate.

Fig. 7. Profit per time slot.

are shown in Fig. 7, where the horizontal axis represents the
time slot sequence, with each time slot being 1s long, and the
vertical axis represents the profit. It can be observed that the
LBPM algorithm obtains significantly higher profits in most
of the time slots than the comparison algorithms. The profits
obtained by the LBPM algorithm in each time slot are mainly
between 2.1 × 106 and 2.3 × 106 units. The MEC provider
using the LBPM algorithm can obtain more profits in each
time slot. In the LBPM algorithm, the optimization objective is
modeled as the optimal matching problem at the beginning of
each time slot, and then the Lyapunov queues and Hungarian
Algorithm are used to solve it, while the other algorithms
use greedy thinking and does not obtain the global optimal
solution. Therefore, the LBPM algorithm obtains more profits
in each time slot.

Fig. 8 shows the impact of different algorithms on the
total number of time slots required to process all arrival
tasks. The horizontal axis represents the experiment sequence,
where random offloading tasks were generated using the
same parameter settings. The upper y-axis represents the
total number of time slots, and the bottom y-axis represents
the optimization rate of the LBPM algorithm compared to
the other algorithms. From this figure, it can be observed
that the LBPM and MSCPC algorithms generally require

Fig. 8. Number of time slots required to complete tasks and optimization
rate.

202-203 time slots to process all arrival tasks, while the
CGTAS and MGW algorithms require 202-203 time slots.
Moreover, in terms of the optimization rate, most of the
values are negative, indicating that the LBPM algorithm can
reduce the total number of time slots required for MEC to
process all arrival tasks compared to the CGTAS and MGW
algorithms. The reason behind this is that the LBPM algorithm
considers the profit and Lyapunov queue length through the
drift-plus-penalty framework, which requires fewer time slots
to process tasks. Nevertheless, the MSCPC algorithm exhibits
a slightly lower number of time slots compared to the LBPM
algorithm. This discrepancy arises from the application of
the chop-up-and-update algorithm in the MSCPC algorithm.
By breaking down tasks and MEC instances into smaller units
for processing, this algorithm effectively accelerates the search
speed.

In order to further study the performance and application
scenarios of the proposed LBPM algorithm in this paper,
experiments on the parameters were conducted as follows.

Fig. 9 illustrates the effect of the number of offload task
types on the algorithm’s performance. The horizontal axis
represents the number of task types, while the upper vertical
axis shows the average time profit, and the bottom vertical
axis displays the optimization rate of the LBPM algorithm
compared to the comparison algorithms. The results demon-
strate that the LBPM algorithm outperforms the comparison
algorithms, and as the number of task types increases, the
degree of optimization in the LBPM algorithm’s average time
profit relative to the comparison algorithms also increases.
Specifically, when the number of task types |K | equals 14,
the optimization rates of the LBPM algorithm relative to the
CGTAS, MGW, and MSCPC algorithms are 200%, 100%, and
20%, respectively. The reason for this superiority is that the
LBPM algorithm used in this paper employs the Lyapunov
function in the Lyapunov optimization theory, which considers
the length of the Lyapunov queue for all types of tasks. Thus,
the LBPM algorithm is more suitable for scenarios with a large
number of task types.

Fig. 10 illustrates the impact of time slot length on algorithm
performance. The horizontal axis represents multiples of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on June 27,2024 at 02:14:12 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: PROFIT MAXIMIZATION OF INDEPENDENT TASK OFFLOADING IN MEC-ENABLED 5G IoV 11

Fig. 9. Time-averaged profits and optimization rates under different numbers
of unload task types.

Fig. 10. Time-averaged profit and optimization rate under different time slot
lengths.

unit time slot length Tslot = 1s. The upper figure shows
the time-averaged profit, and the bottom figure shows the
optimization rate of the LBPM algorithm relative to the
comparison algorithms. The findings reveal that the LBPM
algorithm surpasses the comparison algorithms within the time
slot length range of (0.5, 2.0)∗ Tslot . However, when the time
slot length extends to (2.5, 5.0) ∗ Tslot , both the LBPM and
CGTAS algorithms exhibit a slight decline in performance.
Notably, the MGW and MSCPC algorithms even incur zero
profit during this extended time slot period. This phenomenon
is attributed to the increase in time slot length, leading to
a higher number of tasks surpassing the SLA threshold sk .
Consequently, these tasks are redirected to central MEC,
resulting in a reduction of tasks processed in edge MEC
computing. Hence, the meticulous adjustment of the time
slot length parameter is imperative for optimizing algorithm
performance.

Fig. 11 illustrates the impact of task arrival rate on algorithm
performance. The x-axis represents the average number of
tasks arriving per time slot, while the y-axis of the upper figure
indicates the time-averaged profit, and the y-axis of the bottom
figure represents the optimization rate of the LBPM algorithm
relative to the comparison algorithms. The results show that the

Fig. 11. Time-averaged profit and optimization rate under different number
of unload task.

Fig. 12. Time-averaged profit and optimization rate under different values
of sk .

LBPM algorithm achieves higher profits than the comparison
algorithms. As the average number of tasks arriving per time
slot increases, all algorithms experience an increase in profits.
However, the profit growth rate of the LBPM algorithm is
higher than that of the comparison algorithms. When the
average task arrival is between 1 and 5, the optimization rate
remains at 0%. This is because, in scenarios where tasks
are scarce and MEC resources are abundant, there is ample
space for task selection among resources. Consequently, all
algorithms can achieve optimal solutions. As the number of
tasks increases, the optimization rate also rises. This is because
the drift-plus-penalty framework in Lyapunov optimization
theory considers both the Lyapunov queue length and profit.
Therefore, the LBPM algorithm is more suitable for scenarios
with high task arrival rates.

Fig. 12 illustrates the impact of sk on algorithm perfor-
mance. The x-axis represents the value of sk as a multiple
of the maximum execution time of tasks, and the y-axis
represents the time-averaged profit. The figure shows that
when sk ∈ (3, 7) ∗ timemax

execute, the profits of all algorithms
are zero. This is because when the threshold sk is small, all
tasks exceed this threshold, resulting in their redirection to the
central MEC for processing instead of being handled at the
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Fig. 13. Execution time of each algorithm.

edge MEC. Consequently, the profit for edge MEC is zero.
But when sk ∈ (11, 40) ∗ timemax

execute, the LBPM algorithm
performs better than the comparison algorithms. Therefore,
the setting of the value for sk is crucial for the experiment.

Figure 13 displays the execution time for the LBPM
algorithm alongside other comparative algorithms. The aver-
age execution time for LBPM, CGTAS, MGW, and MSCP
are 2.3274 seconds, 1.0104 seconds, 6.0150 seconds, and
0.2564 seconds, respectively. Given the computational com-
plexity of the LBPM algorithm, as denoted by Formula (28),
which scales cubically with the number of tasks or the state
of MECs, LBPM optimizes for the highest average time profit
at the expense of increased execution time. In contrast, the
MGW algorithm employs the whale optimization algorithm,
necessitating numerous calculations at each step, including
complex behaviors such as searching for and encircling prey,
as well as position updates via a spiral path. This approach
requires intricate mathematical operations and several itera-
tions, resulting in a longer computation time.

VI. CONCLUSION

This paper investigates the problem of maximizing profits
by efficiently offloading independent tasks among MECs,
reducing the total time slots, and utilizing the computing
resources effectively. To accomplish this, we establish a
physical network model and independent task model, and
design LBPM, a profit maximization algorithm, utilizing the
drift-plus-penalty framework of Lyapunov optimization theory.
LBPM maintains a Lyapunov queue, establishes a Lyapunov
function, and calculates the upper bound of the drift-plus-
penalty function. The optimization objective is modeled as an
optimal matching problem, and the Hungarian Algorithm is
used to obtain the optimal solution. Compared to CGTAS and
MGW, LBPM achieves over twice the time-averaged profit.
In addition, it outperforms the MSCPC with an optimization
rate of around 15%.

As the deployment of MEC servers is influenced by factors
such as the local network environment and the density of
mobile terminals, the location and heterogeneity of MEC
servers may vary. Therefore, we will conduct further research
on the coalition problem in the MEC collaborative computing,

particularly on the formation of coalitions and resource
offloading.
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