
6278 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

Low-Latency Scheduling Approach for Dependent
Tasks in MEC-Enabled 5G Vehicular Networks

Zhiying Wang, Gang Sun , Senior Member, IEEE, Hanyue Su, Hongfang Yu , Member, IEEE,
Bo Lei, and Mohsen Guizani , Fellow, IEEE

Abstract—With the development of the Internet of Vehicles
(IoV), multiaccess edge computing (MEC) technology places com-
puting resources closer to users at edge nodes, enabling faster,
more reliable, and secure computing services. In the MEC-
enabled IoV networks, task offloading scheduling, as an effective
method to alleviate the computational burden on vehicles, is
gaining increasing attention. However, with the intelligent and
networked development of vehicles, the complex data dependency
between in-vehicle tasks brings challenges to offloading schedul-
ing. In contrast to many existing methods that solely address
individual tasks, there is a growing need to tackle interrelated
tasks within the IoV framework. This includes tasks like process-
ing vehicle sensor data, gathering and analyzing road condition
information, facilitating collaborative decision making among
vehicles, and optimizing traffic signal systems. Our objective is
to address the broader challenge of offloading dependent tasks,
as this closely aligns with real-world scenes and requirements.
In this article, we propose a priority-based task scheduling algo-
rithm (PBTSA) to minimize processing delay when the tasks
are interdependent. PBTSA proposes a method that can bet-
ter measure the data transmission and calculation delay of the
IoV networks. We first model dependent tasks as a directed
acyclic graph (DAG) and then use the reverse breadth-first search
(RBFS) algorithm to generate the priority of each subtask, and
finally according to the priority with low complexity to offload
subtasks greedily to minimize task processing delay. We compare
the PBTSA with the other two existing algorithms through sim-
ulations. The results show that the PBTSA can effectively reduce
the task processing delay and can reach close to 10%.

Index Terms—5G, dependent tasks, Internet of Vehicles (IoV),
multiaccess edge computing (MEC), resource allocation.

I. INTRODUCTION

W ITH the advancement of Internet of Vehicles (IoV) [1],
the number of intelligent vehicles has skyrocketed,

leading to the emergence of various in-vehicle applications.

Manuscript received 25 June 2023; revised 28 July 2023; accepted
27 August 2023. Date of publication 30 August 2023; date of current ver-
sion 6 February 2024. This work was supported in part by the National Key
Research and Development Program of China under Grant 2019YFB1802800.
(Corresponding author: Gang Sun.)

Zhiying Wang, Gang Sun, Hanyue Su, and Hongfang Yu are with
the Key Laboratory of Optical Fiber Sensing and Communications,
Ministry of Education, University of Electronic Science and Technology
of China, Chengdu 611731, China (e-mail: wzy1211893610@163.com;
gangsun@uestc.edu.cn; 442205331@qq.com; yuhf@uestc.edu.cn).

Bo Lei is with the Network Research Institute, China Telecom
Corporation Limited Research Institute, Beijing 100045, China (e-mail:
leibo@chinatelecom.cn).

Mohsen Guizani is with the Machine Learning Department, Mohamed
Bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE (e-mail:
mguizani@ieee.org).

Digital Object Identifier 10.1109/JIOT.2023.3309940

However, due to the limited computing and storage resources
available in vehicles, there is a lack of capability to effec-
tively run these applications. As a result, the performance of
these applications suffers, and the quality of service is compro-
mised [2]. To address this issue, the integration of multiaccess
edge computing (MEC) into vehicular networks has been rec-
ognized as an effective solution. MEC involves deploying
servers on network edge devices like roadside units (RSUs)
and base stations (BSs), allowing vehicle users to access
computing services with low latency and high reliability.

In the early stages of the IoV, in-vehicle applications were
relatively small and monolithic, with the primary focus of
computing offloading being the entire application. Researchers
primarily investigated whether the application should be
offloaded and where it should be offloaded. However, previous
algorithms have shown limitations in making effective offload-
ing decisions when there are dependencies among subtasks.
With the advancement of vehicle intelligence, more compu-
tationally complex applications have emerged, such as path
planning, autonomous driving, and augmented reality [3].
These applications often consist of multiple interdependent
tasks that work together to meet intricate functional require-
ments. To improve task execution parallelism and reduce
application completion latency, each task within the applica-
tion can be offloaded to a different edge server for execution.
However, the execution order of tasks is constrained by
data dependencies, and transferring data between servers can
introduce additional communication overhead. As a result,
effectively managing intertask dependencies has become a key
focus in offloading scheduling research.

The scheduling problem for applications with dependent
tasks can be represented as a directed acyclic graph (DAG),
where the tasks are depicted as vertices and the task depen-
dencies are represented as edges. In this model, each task is
associated with a specific number of CPU cycles required
for its execution and obtains the result upon completion.
The problem arises when mapping the dependent tasks to
available resources in edge–cloud scenes. As the number
of tasks and resources increases, determining the optimal
schedule from numerous task-resource mapping combina-
tions becomes challenging. Consequently, efficiently making
offloading decisions that consider task dependencies in mobile-
edge computing systems becomes an NP-hard problem [4].
The primary challenge is to minimize the overall application
completion time while ensuring task dependencies are met in
resource-constrained mobile-edge computing systems.
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There have been many studies on offloading-dependent
tasks. Sundar and Liang [5] proposed a heuristic algorithm
termed individual time allocation with greedy scheduling
(ITAGS) to achieve an efficient solution, aiming at minimiz-
ing the execution cost of applications under the application
completion time constraint. Zhao et al. [6] modeled the ODT
problem with service caching in a homogeneous MEC scene.
And they presented a favorite successor-based heuristic algo-
rithm to efficiently offload dependent tasks to edge nodes with
limited (and predetermined) service caching and minimize the
application completion time. Although there have been many
studies on dependent task scheduling, previous researches have
never investigated the scheduling strategy for dependent tasks
in the IoV context.

The existing algorithms often have high computational
complexity, leading to significant task processing delays and
execution time for the decision algorithm when the number
of tasks increases. Therefore, there is a need for a low-
complexity algorithm to handle dependent task scheduling in
IoV networks. Building upon previous research, this article
proposes priority-based task scheduling algorithm (PBTSA) to
solve the dependent subtask scheduling problem in the IoV.
Compared with existing methods, PBTSA has performance in
measuring data transmission and computing delays in the IoV.
In addition, the algorithm also optimizes the calculation for-
mula of subtask priority, which improves the accuracy and
effectiveness of the assignment.

The main contributions of this article are as follows.
1) We propose a new approach to solve the resource

scheduling problem for dependent tasks in the IoV. This
method effectively captures the transmission delays that
occur during data exchange within the IoV network.
By accurately assessing these latencies, we can better
evaluate the overall performance of the system.

2) We enhance the calculation formula used for subtask
prioritization. By optimizing this formula, we improve
the accuracy and effectiveness of assigning priorities to
individual subtasks within the IoV system. Additionally,
we propose the reverse breadth-first search (RBFS)
algorithm to generate prioritization orders for each sub-
task. This approach ensures that subtasks are sequenced
appropriately, taking into consideration their interdepen-
dencies and system requirements.

3) We propose a low-complexity greedy approach PBTSA
to offload subtasks based on their priorities. Leveraging
the prioritization generated by the RBFS algorithm, we
design an efficient offloading strategy that minimizes
both task processing latency and the execution time of
the decision algorithm. This approach allows for opti-
mized resource allocation and effective utilization of
available computing resources within the IoV system.

The remainder of this article is organized as follows.
Section II reviews the related work and shows the motiva-
tion of our research. Section III presents the system model,
which consists of the system model, physical network model,
and the task model and establishes the optimization objec-
tives. Section IV introduces the proposed algorithm based on
priority greedy offloading to solve the studied problem. In

Section V, we conduct extensive simulations and analyze the
results. Finally, Section VI concludes this article.

II. RELATED WORK

With the advancement of the IoV, vehicles increasingly
require computing resources and reduced latency. In this
context, MEC emerges as a promising solution to tackle
computation offloading challenges in mobile applications that
are highly sensitive to latency and computationally inten-
sive [7], [8], [9], [10], [11], [12], [13]. Zhang et al. [7]
proposed an iterative algorithm to obtain the optimal solution
and a two-stage heuristic algorithm to obtain an approximate
optimal solution by offloading tasks to edge servers or vehi-
cles and allocating wireless resources of base stations and
computing resources of servers to minimize task process-
ing delays for all devices. Similarly, Thananjeyan et al. [8]
formulated a problem of allocating edge storage and comput-
ing resources using Lyapunov optimization theory, matching
theory, and other optimization methods to jointly optimize
service caching, service request scheduling, and resource allo-
cation, thus minimizing the average response delay of services.
MEC’s effectiveness is limited in areas with poor server cover-
age, and there are many idle computing resources in peripheral
vehicles. The author proposes a distributed multihop task
offloading decision model that includes a candidate vehicle
selection mechanism and a task offloading decision algorithm
to improve task execution efficiency [12]. The authors pro-
pose a strategy to tackle energy consumption and computation
costs in vehicular networks by employing traffic offloading
and scheduling. Their proposed approach utilizes quantum
particle swarm optimization (PSO) to optimize the joint
offloading strategy in mobile-edge computing-enabled vehic-
ular networks, thereby enhancing the Quality of Experience
(QoE) [13].

In recent years, there has been a rapid development of
the IoV, leading to the emergence of complex applications
that were not seen before. These applications often consist
of interdependent subtasks, and efficient resource schedul-
ing and task offloading in the presence of task dependencies
has become a hot research topic. Several researchers have
made significant contributions to optimizing various aspects
of application execution in the IoV [14], [15], [16], [17],
[18], [19], [20], [21]. One notable contribution in this field
is the joint-dependent task offloading and flow schedul-
ing heuristic (JDOFH) proposed by Sahni et al. [14]. This
heuristic takes into account task dependencies represented
by a DAG and the start time of network flows. The goal
is to optimize the overall execution time of the applica-
tion. Another related work by Maray et al. [15] presents a
heuristic algorithm that aims to reduce the completion time
of dependent tasks while ensuring that application deadline
constraints are satisfied. Their algorithm focuses on mini-
mizing the time required for executing interdependent tasks.
Additionally, Mahmoodi et al. [16] proposed a wireless-aware
scheduling and computation offloading algorithm that par-
allelizes appropriate tasks to shorten the overall execution
time of the application. This approach considers the wireless
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communication aspects and takes advantage of parallel pro-
cessing to optimize the performance. In order to address
both application completion time and energy consumption,
Peng et al. [19] introduced a task scheduling method based on
the whale optimization algorithm (WOA). The objective of this
method is to minimize both completion time and energy con-
sumption by effectively allocating tasks to available resources.
Moreover, Huang et al. [20] took into account security, energy
consumption, and application completion time. They utilized a
genetic algorithm (GA) to minimize the energy consumption
of mobile devices while satisfying the application deadline
constraints. Similarly, Xie et al. [21] proposed a directional
and nonlocal-convergent PSO algorithm to optimize the com-
pletion time and cost of applications. Their algorithm aims to
find an optimal solution considering the completion time and
associated cost.

Applications in the IoV often require fast responses, and
there are numerous studies currently being conducted with the
objective of minimizing the total execution time (TET) [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31]. To minimize
the completion time of the entire application, Mo et al. [22]
utilized graph convolutional networks (GCNs) to capture task
dependencies and transform the problem of offloading depen-
dent tasks into a node classification problem, effectively
addressing non-Euclidean data. Song et al. [23] investigated
the multiobjective computation offloading problem, aiming
to minimize the application completion time and energy
consumption of mobile devices (MDs). They proposed a
multiobjective evolutionary algorithm based on decomposition
(MOEA/D) to tackle this problem. In another study [24], two
algorithms have been proposed: one based on a GA and the
other based on conflict graph models. Zhang and Wen [25]
formulated application execution as a delay-constrained work-
flow scheduling problem and proposed a one-climb pol-
icy and Lagrange relaxation algorithm to minimize MDs’
energy consumption, considering execution restrictions. To
address the tradeoff between latency and energy consump-
tion, Deng et al. [31] presented a formulation that treats
task offloading and splitting as an optimization problem. The
objective is to minimize the overall cost, which encompasses
both latency and energy consumption. This is achieved by
simultaneously optimizing the task splitting ratio and the
uplink transmit power of the vehicle terminal (VT). Although
there are numerous studies on reducing network latency for
MEC scenes, there is currently no method specifically tai-
lored to the task-dependent reduction of task completion time
in the context of MEC-enabled IoV. Given the time-sensitive
nature IoV, finding a solution to this problem has become
urgent. Therefore, we propose a more realistic approach con-
sidering both data transmission and computation delays in
vehicular networks for effectively reducing the latency of task
processing.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

A three-tier network model (as shown in Fig. 1) is built for
the task offloading scheduling problem in IoV.

Fig. 1. MEC-enabled 5G IoV model.

1) The bottom layer of the model consists of vehicle
nodes. For any two vehicles, they can communicate
directly with a vehicle-to-vehicle (V2V) link if the dis-
tance between them does not exceed the wireless signal
coverage.

2) The middle layer of the model consists of RSUs. RSU
has two communication connections: a) wired connec-
tion to other RSUs and the BSs to realize the connection
between MEC and vehicles and b) Vehicle-to-RSU
(V2R) wireless link used to communicate with vehicles
within the wireless signal coverage.

3) The upper layer of the model consists of BSs and a MEC
server is deployed on each BS.

When a vehicle generates a computational task, it can
choose to offload it locally, using its own computing resources
for execution. The vehicle can also offload the task using V2V
communication, transferring the computational task to other
vehicles and utilizing their computing resources for execution.
Alternatively, the vehicle can offload the task to the MEC on
the BSs through RSUs and utilizing the MEC’s computing
resources for execution.

B. Physical Network Model

The abstraction of MEC-enabled 5G IoV can be repre-
sented as W = (V, M, L). Here, V = 1, 2, . . . , v, . . . , |V|
represents the set of vehicles with their corresponding low-
frequency computing resources fv. The MEC set is denoted as
M = 1, 2, . . . , m, . . . , |M|. The MEC is generally integrated
with communication base stations, offering high-frequency
computing resources fm. The union of V and M is repre-
sented as C = V ∪ M = 1, 2, . . . , |v|, |v| + 1, . . . , |V| + |M|,
encompassing all computational resource devices. The physi-
cal environment may have tasks currently being executed, so
tcremain is used to represent the cumulative execution time of all
tasks on device c, indicating the time it takes for device c to
transition from an active task state to an idle state after wait-
ing for tcremain. L represents the set of network links, including
V2V communication links LV , cellular network communica-
tion links between vehicles and MEC LVM , and fiber-optic
links between MECs LM . Therefore, L = LV ∪ LM ∪ LVM .
Additionally, the definitions of the variables involved in this
section are summarized in Table I.
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TABLE I
KEY NOTATIONS USED IN THIS ARTICLE

In this article, the wireless communication in the 5G IoV
network is modeled based on the nonorthogonal multiple
access (NOMA) communication protocol, where the set of
subchannels is denoted as K = {1, 2, . . . , k, . . . , |K|}. The
communication transmission rate from vehicle v to vehicle v′
can be obtained as

Rvv′ = Bvv′ log2

(
1+ xv,kPvgvv′∑

s∈C xs,kPsgs,v′ + σ 2

)
(1)

where xv,k denotes whether vehicle v occupies subchannel k.
If xv,k = 1, it indicates that vehicle v utilizes subchannel
k for communication transmission. Pv represents the trans-
mission power of vehicle v. gvv′ represents the channel gain
between vehicle v and vehicle v′. σ 2 denotes the additive white
Gaussian noise on the subchannel.

Similarly, the communication transmission rates from vehi-
cle v to MEC m and from MEC m to vehicle v are, respectively

Rvm = Bvm log2

(
xv,kPvgvm∑

s∈V xs,kPsgs,m + σ 2

)
(2)

Rmv = Bmv log2

(
xm,kPmgmv∑

s∈C xs,kPsgs,v + σ 2

)
. (3)

MECs communicate with each other using fiber-optic links,
and the transmission rate is represented as (4), where Bmm′ is
the bandwidth of channel between MECs, Dmm′ is the distance

Fig. 2. Example of DAG task.

between MECs, pr is the power due to receiving task, and No

is the noise power

Rmm′ = Bmm′ log2

(
1+ pr

Dmm′No

)
. (4)

C. Task Model

When dependent tasks are generated, subtasks with precon-
ditions must wait for the completion of the preceding tasks
and obtain their execution results before they can start exe-
cuting. Additionally, some of the computing resources in the
physical network may be occupied by other tasks. In cases
where computing resources are limited, it is necessary to
consider how to schedule dependent subtasks. Without loss
of generality, we assume that vehicle v has a computational
task to be completed, which can be represented by a DAG
denoted as G = (N, E), as shown in Fig. 2. Here, N rep-
resents the set of subtasks, and each subtask in the DAG
task is atomic and noninterruptible during computation. E
represents the set of directed edges that describe the depen-
dencies between subtasks. The total number of CPU clock
cycles required to complete subtask ni is denoted by the cor-
responding node weight ωi, which can vary based on different
computing requirements, data sizes, algorithmic complexities,
or resource availability for each subtask.

Each edge (ni, nj) represents an execution dependency or
data dependency between subtasks ni and nj, where subtask nj

can only be executed after subtask ni is completed. Subtask ni

is a direct predecessor of subtask nj, and subtask nj is a direct
successor of subtask ni. The amount of data that needs to be
transferred from subtask ni to subtask nj after the execution of
ni is represented by the edge weight (ni, nj), denoted as di,j.

The sets pred(ni) = nj | (nj, ni) ∈ E and succ(ni) =
nj | (ni, nj) ∈ E represent the immediate predecessor and suc-
cessor subtask sets of subtask ni, respectively. For example,
in Fig. 2, pred(n4) = n1, n2 and succ(nsrc) = n1, n2, n3.
If pred(ni) = ∅, then ni is the source subtask nsrc; if
succ(ni) = ∅, then ni is the sink subtask nsink.

Therefore, the computation time for subtask ni executed on
device c is

tcomp
i,c = ωi

fc
∀i ∈ N, c ∈ C. (5)

Assuming that subtask ni is executed at c1 and subtask nj

is executed at c2, the transmission delay for c1 to transmit the

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on March 12,2024 at 07:10:23 UTC from IEEE Xplore.  Restrictions apply. 



6282 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 4, 15 FEBRUARY 2024

execution result of subtask ni to c2 for the execution of nj is

ttrans(c1,c2)
i,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

di,j
Rv

, c1, c2 ∈ V, c1 �= c2,
(
ni, nj

) ∈ E
di,j
Rm

, c1, c2 ∈ M, c1 �= c2,
(
ni, nj

) ∈ E
di,j
Rvm

, c1 ∈ V, c2 ∈ M,
(
ni, nj

) ∈ E
di,j
Rmv

, c1 ∈ M, c2 ∈ V,
(
ni, nj

) ∈ E
0, c1 = c2, c1, c2 ∈ C.

(6)

D. Problem Formulation

Assuming that MEC enables nonpreemptive scheduling of
subtasks in 5G IoV networks. A computing device can only
execute one subtask, and as long as a subtask is not completed,
its execution process cannot be interrupted, and the computing
resources used by it cannot be preempted by other subtasks.
Each subtask can be executed by a computing device within
the physical network range, and the offloading decision of
subtasks is represented by a binary matrix Y = |V| × |C|. If
subtask ni is offloaded to computing device c, then yi,c = 1,
otherwise yi,c = 0. Each subtask in the task should be executed
and can only be executed once by a computing device, i.e.,∑

c∈C

yi,c = 1 ∀i ∈ N, c ∈ C (7)

yi,c ∈ {0, 1} ∀i ∈ N, c ∈ C. (8)

Therefore, after the offloading by decision Y , the execution
time of subtask ni is

oi =
∑
c∈C

yi,cωi

fc
∀i ∈ N, c ∈ C. (9)

The transmission delay of the data dependency (ni, nj) ∈ E
between subtasks ni and nj is

gi,j =
∑
c∈C

∑
c′∈C

yi,cyj,c′
di,j

Rcc′

∀ ni, nj ∈ N,
(
ni, nj

) ∈ E, c, c′ ∈ C. (10)

Assuming that subtask ni is offloaded to computing device c,
i.e., yi,c = 1, the earliest start time (EST) and earliest finish
time (EFT) for subtask ni on device c are as follows:

EST(ni, c) = max

{
Tavail(c), max

nj∈pred(ni), yj,c′=1{
AFT

(
nj

)+ dj,i

Rc′c

}}
∀i ∈ N, c ∈ C

(11)

EFT(ni, c) = EST(ni, c)+ ωi

fc
∀i ∈ N, c ∈ C. (12)

Due to the offloading decision of subtasks, the actual finish
time (AFT) AFT(nj) of a subtask nj may be earlier than the
EFT EFT(nj). Tavail(c) represents the earliest time when device
c has sufficient computing resources to execute subtask ni.
maxnj∈pred(ni), yj,c′=1{AFT(nj) + ([dj,i]/[Rc′c])} represents the
sum of the latest AFT among the predecessor tasks of sub-
task ni and the time taken to transmit the execution result to
device c. The necessary condition for subtask ni to start exe-
cution is that device c has sufficient computing resources and

Fig. 3. DAG subtask offloading queue of device c.

the execution completion results of all its predecessor tasks
have arrived at device c.

Assuming that multiple subtasks are offloaded to device c
and the set of subtasks that have not yet started execution
is denoted as nc

arrive or {nc
arrive | yi,c = 1 ∀ni ∈ nc

arrive}, the
actual start time (AST) of subtask ni is subject to the following
constraints:

AST(ni, c) ≥ AST
(
nj, c

)
if AAT(ni, c) ≥ AAT

(
nj, c

)
and

EST(ni, c) = EST
(
nj, c

) = Tavail(c)

∀ ni, nj ∈ nc
arrive, c ∈ C. (13)

The actual arrive time (AAT) represents the actual time
when a subtask arrives at the device after offloading.
Constraint (13) ensures the first-in–first-out (FIFO) character-
istic of the task queue in the device. When the EST of two
subtasks ni and nj in the device is equal, i.e., EST(ni, c) =
EST(nj, c), the subtask that arrives first at device c is given
priority for execution.

As shown in Fig. 3, subtasks n2 and n3 are offloaded
and executed on device c, with subtask n2 arriving earlier,
i.e., n2, n3 ∈ nc

arrive and AAT(n2, c)> AAT(n3, c). The data
dependencies of n2 and n3 have been transmitted to device c,
but their execution has not yet started, i.e., EST(n2, c) =
EST(n3, c) = Tavail(c) = AFT(n0). Due to the FIFO charac-
teristic of the device’s task queue, subtask n2 is given priority
over n3, resulting in AST(n2, c) > AST(n3, c).

Therefore, the AST of the subtask ni executed on device
c is

AST(ni, c) = AFT(n0, c)+
i−1∑
j=1

oj

if EST(ni, c) = EST
(
nj, c

) = Tavail(c) and yk,c = 1

∀ 1 ≤ j ≤ i− 1, ni, nj, nk ∈ nc
ready, c ∈ C

(14)

nc
ready =

{
nc

ready | EST(ni, c) = Tavail(c),

yi,c = 1 ∀ni ∈ nc
ready

}
(15)

where nc
ready represents the queue of subtasks that are ready

for execution on device c, following the FIFO principle. As
long as computing resources are available, subtasks can enter
the execution state. n0 represents the subtask that is cur-
rently being executed or the previously completed subtask.
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Therefore, (14) represents that the AST of subtask ni on
device c, AST(ni, c), is the sum of AFT(n0, c) and the exe-
cution time of all preceding ready subtasks before ni. As
shown in Fig. 3, device c is executing subtask n0, and the
ready subtasks offloaded to device c are in the order of
[n2, n3, n6]. Therefore, the AST of subtask n6 is AST(n6, c) =
AFT(n0)+ o2 + o3.

Hence, the AFT of subtask ni is

AFT(ni) =
∑
c∈C

yi,c AST(ni, c)+ oi ∀i ∈ N, c ∈ C. (16)

The optimization objective of this article is to obtain
reasonable task offloading decisions that minimize the task
completion time, while satisfying the aforementioned con-
straints

min : AFT(nsink) (17)

s.t. Constraints (7)–(16).

This problem can be solved by verifying the solution in
polynomial time, but no efficient algorithm has been found
to solve it. Therefore, problem (17) is an integer linear
programming problem with NP property, which is an NP-
complete problem [32]. In the next section, an algorithm will
be proposed to solve it.

IV. ALGORITHM DESIGN

The previous section provided a detailed explanation of the
physical network model and DAG task model in the context
of 5G IoV networks. From a service perspective, minimizing
task latency, as stated in the optimization objective (17), is cru-
cial for user experience. Therefore, we present a PBTSA called
PBTSA. The algorithm consists of two phases. The first phase
involves generating task scheduling priorities based on the
MEC-enabled 5G IoV network computing resource environ-
ment W = (V, M, L). The second phase utilizes the priorities
generated in the first phase to schedule tasks.

A. Subtask Priorities

In the task scheduling process, the use of subtask priorities
is crucial to determine the order in which subtasks are executed
and to make informed offloading decisions. By incorporat-
ing subtask priorities, the scheduling algorithm can effectively
manage resource allocation, reduce task latency, and improve
the overall efficiency of task execution in the MEC-enabled
5G IoV networks.

In this section, the subtask priorities are obtained based on
the recursive best-first search algorithm, ensuring that the pri-
ority of a subtask is always greater than the priority of its
immediate successor tasks.

The priority value (PV) for each subtask in the MEC-
enabled 5G IoV network environment is recursively obtained
from the subtask nsink using the following equation:

PV(ni) = max
nj∈succ(ni)

{
PV

(
nj

)+ oi + gi,j
} ∀ i ∈ N (18)

oi = 1

|C|
∑
c∈C

ωi

fc
∀ i ∈ N (19)

Algorithm 1 Priority Generation Algorithm Based on RBFS
Input: G = (N, E), W = (V, M, L)

Output: Priority values PV(ni) for all subtasks
1: Initialization: GT = (N, ET), visited = ∅, pending =
{nsink}, pred(ni), succ(ni).

2: while len(pending) > 0 do
3: if ni ∈ {ni | pred(ni) ⊂ visited ∀ni ∈ pending} then
4: pending← pending− {ni};
5: cost← 0;
6: for nj ∈ pred(ni) do
7: temp← PV(nj)+ oi + gj,i;
8: cost← max{cost, temp};
9: end for

10: PV(ni)← cost;
11: visited← visited ∪ {ni};
12: for nj ∈ succ(ni) do
13: if nj �∈ visited then
14: pending← pending ∪ {nj};
15: end if
16: end for
17: end if
18: end while
19: return {PV(ni) ∀ni ∈ N}.

Fig. 4. Get the reversed DAG task. (a) DAG task. (b) Reversed DAG task.

gi,j = |C|(|C| − 1)di,j∑
c∈C

∑
c′∈C
c′ �=cRcc′

∀ (
ni, nj

) ∈ E. (20)

If succ(ni) = ∅, then we define PV(ni) = 0. Typically, there
is only one sink subtask, denoted as nsink. Equation (19) cal-
culates the average processing delay oi for subtask ni in the
MEC-enabled 5G IoV network environment, while (20) calcu-
lates the average transmission time gi,j for the data dependency
(ni, nj).

More specifically, Algorithm 1 provides a detailed descrip-
tion. The algorithm takes the DAG task G = (N, E) and the
MEC-enabled 5G IoV network environment W = (V, M, L)

as inputs to obtain the PV PV(ni) for each subtask ni.
Initialization is performed in line 1. The basic idea of
Algorithm 1 is to use the RBFS algorithm. So in the ini-
tialization, the reversed tasks GT of the current DAG task
are obtained by reversing all edges (ni, nj) → (nj, ni), as
shown in Fig. 4. succ(ni) and pred(ni) represent the set of
predecessor tasks and successor tasks for each subtask ni.
visited = ∅ initializes the set of visited subtasks, which is
used to record subtasks for which the PV has been gener-
ated (visited = ni | PV(ni) �= None ∀ni ∈ N). pending = nsink
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represents the set of pending subtasks, which is used to
record subtasks that may have priority values generated
(pending = ni | pred(ni) ∩ visited �= ∅ ∀ni ∈ N, ni �∈ visited).
Line 2 iterates for each subtask ni in the pending set to
generate the PV PV(ni). Line 3 represents visiting sub-
tasks ni whose predecessor tasks have all been visited
(ni ∈ ni | pred(ni) ⊂ visited ∀ni ∈ pending). Line 4 represents
removing the currently visited subtask ni from the pending set.
Lines 5–10 represent the PV for subtask ni. Line 11 adds the
subtask ni to the visited set. Lines 12–16 represent adding the
unvisited successor tasks nj ∈ nj | nj �∈ visited ∀nj ∈ succ(ni)

of the currently visited subtask ni to the pending set. Finally,
line 19 returns all the priority values for subtasks in the
MEC-enabled 5G IoV network environment, PV(ni) ∀ni ∈ N.

B. Subtask Offloading

In the second stage of the algorithm, a greedy approach is
used to make offloading decisions. All subtasks {ni ∀i ∈ N}
are sorted in descending order based on their priority values.
For each subtask ni, a greedy offloading decision is made to
minimize the AFT AFT(ni), and the offloading matrix Y is
updated based on the offloading decision for subtask ni. Thus,
we propose Algorithm 2.

Algorithm 2 takes the DAG task, the initiating vehicle, and
the current execution status of all computing devices as inputs
and provides the offloading decisions for all subtasks and the
AFT of the task.

Line 1 represents the initialization process. In line 1, the
AFT for each subtask is set to AFT(ni) = None. pred(ni) and
succ(ni) represent the sets of direct predecessors and succes-
sors of subtask ni in G = (N, E). We use Algorithm 1 to
obtain the priority values for the subtasks and sort them in
descending order to obtain the subtask scheduling list Order.
We initialize the offloading decision matrix Y as a zero matrix.

Line 2 uses a loop to traverse the subtask scheduling list.
Line 3 represents the offloading decision for subtask ni. Line 5
initializes the AFT of subtask ni to infinity. Lines 7–11 rep-
resent the selection of the device device that minimizes the
AFT AFT(ni) from all computing devices. Lines 9–11 repre-
sent the calculation of the EST of the data dependencies of
the subtask’s direct predecessors on device c. Line 12 obtains
the EST for the subtask on device c considering the device’s
computational resource constraint. Line 13 obtains the earli-
est completion time of the subtask on device c. Lines 14–17
represent recording the optimal offloading device selection
among all devices. Line 19 updates the usage of computing
resources on device c. Line 20 updates the offloading decision
by offloading subtask ni to device device. Line 22 returns the
offloading decisions for all subtasks and the AFT AFT(nsink)

of the convergence subtask, which represents the completion
time of the DAG task.

C. Algorithm Complexity Analysis

The time complexity analysis of the proposed algorithms in
this section is as follows.

Algorithm 2 PBTSA
Input: G = (N, E), (V, M, L), vinit, {tcremain ∀c ∈ C}
Output: Y , AFT(nsink)

1: Initialization: AFT(ni) = None, pred(ni), succ(ni), Order,
Y = {yi,c = 0 ∀ni ∈ N, c ∈ C}.

2: while len(Order) > 0 do
3: ni ← Order[0];
4: Order← Order − {ni};
5: AFT(ni)←∞;
6: device← None;
7: for c ∈ C do
8: EST(ni)← 0;
9: for nj ∈ pred(ni) do

10: EST(ni)← max
{
EST(ni), AFT(nj)+ gj,i

}
;

11: end for
12: EST(ni)← max

{
EST(ni), tcremain

}
;

13: EFT(ni)← EST(ni)+ ωi/fc;
14: if EFT(ni) < AFT(ni) then
15: device← c;
16: AFT(ni)← EFT(ni);
17: end if
18: end for
19: tdevice

remain ← AFT(ni);
20: yi,device ← 1;
21: end while
22: return Y and AFT(nsink).

First, in the generation of subtask priorities using
Algorithm 1, we need to access each subtask and its prede-
cessors’ priorities in the DAG task. Therefore, the complexity
is O(|N| + |E|). Next, in the greedy offloading of each sub-
task using Algorithm 2, the complexity is O(|N|) as we try
to offload each subtask to the device that minimizes the AFT.
Considering that we try all devices, the complexity becomes
O(|N||C|). Thus, the complexity of Algorithm 2 is O(|N|2|C|).

V. SIMULATION RESULTS AND ANALYSIS

This section begins by introducing the setting of key param-
eters and then proceeds to compare the proposed algorithm
with existing algorithms. Zheng et al. [33] proposed a PBLA
algorithm. This algorithm computes three parameters for each
subtask and then uses these parameters to sort all subtasks.
The sorted results are then used for greedy task offloading.
Another study by [34] introduced a TBTOA algorithm. This
algorithm determines the priority of each subtask on each com-
puting device and performs greedy task offloading based on
these priorities. The following section will present and analyze
the performance comparison results.

A. Simulation Environment and Parameters

In the simulation experiments, we compare the PBTSA
algorithm proposed in this article with PBLA and TBTOA.
We use Python 3.11.2 to build a simulation platform to test
and verify the performance of the comparison algorithms.
The communication-related parameters used in the experi-
ments are taken from [35], while the task, MEC, vehicle
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(a) (b) (c)

Fig. 5. Variations in processing latency and optimization rate under different experimental parameters. (a) Results for different number of subtasks. (b) Results
for different directed edge densities. (c) Results for different number of vehicles.

computing frequency, and other computation-related param-
eters are derived from [36].

B. Simulation Results and Analysis

This section primarily focuses on comparing the
performance metrics and optimization rates of the same
tasks under different algorithms (PBTSA, PBLA, and
TBTOA). The performance comparison and optimization
rates are obtained by averaging the metrics over 50 repeated
experiments. Taking the PBLA algorithm as an example, the
optimization rate formula of the PBTSA algorithm is

opt_rate = ValuePBTSA − ValuePBLA

ValuePBLA
. (21)

Fig. 5 shows variations in processing latency and
optimization rate under different experimental parameters.
Fig. 5(a) illustrates the processing latency and optimization
rates of the three algorithms when executing the same DAG
task. Directed edge density refers to the ratio between the
actual number of edges and the possible number of edges
in a directed graph. For example, a directed edge density of
0.01 means that the number of edges in the DAG is 0.01 times
the maximum possible number of edges. A higher directed
edge density indicates a greater interdependence among the
nodes in the graph, implying stronger dependencies among
the subtasks within the application. From the figure, we can
observe that as the number of subtasks in the DAG task
increases, the computation time of the task also increases,
resulting in an increasing processing latency for all three algo-
rithms. The PBTSA algorithm performs better than the PBLA
and TBTOA algorithms. The optimization rate of the PBTSA
algorithm relative to the PBLA algorithm remains above 10%
and increases as the number of subtasks in the DAG task
increases. When the number of subtasks reaches 500, the
optimization rate stabilizes at around 25%–30%. For subtask
numbers ranging from 10 to 350, the optimization rate of the
PBTSA algorithm relative to the TBTOA algorithm increases
from 3% to 6%. However, as the number of subtasks further
increases, the optimization rate decreases to around 2%. These
results demonstrate that the proposed PBTSA algorithm can
achieve a more optimal subtask scheduling order, leading to
shorter processing latency for the DAG task.

Fig. 5(b) shows the processing latency and optimization
rates of the three algorithms for a DAG task with 300 sub-
tasks and different directed edge densities. It can be observed
that as the directed edge density increases, the time for
data dependency transmission also increases, resulting in an
increase in the processing latency for all three algorithms.
The PBTSA algorithm performs better than the PBLA and
TBTOA algorithms. As the density of the DAG task increases
from 0.01 to 0.09, the optimization rates of the PBTSA algo-
rithm relative to the PBLA and TBTOA algorithms decrease.
Therefore, the proposed PBTSA algorithm achieves better
subtask scheduling optimization for DAG tasks with lower
densities. This is because as the density of the DAG task
increases, the number of directed edges and data dependencies
also increases. Since the greedy algorithm schedules subtasks
based on their priority order, the more data dependencies
there are, the more fixed the priority order of the subtasks
becomes.

To further investigate the impact of the number of vehicles
in MEC-enabled 5G IoV networks on the processing latency
of DAG tasks, experiments are conducted with the number
of vehicles as a variable. The simulation results are shown in
Fig. 5(c). It can be observed that as the number of vehicles
increases, the computing resources in the network environment
increase, resulting in a decrease in the processing latency of
DAG tasks. However, due to the data dependencies in DAG
tasks, the decrease in processing latency occurs at a slower
rate as computing resources continue to increase. When the
number of vehicles is between 5 and 80, the optimization
rate of the PBTSA algorithm relative to the PBLA algorithm
increases from 7.5% to 18%, and relative to the TBTOA
algorithm, it increases from around 0% to 6%. As the num-
ber of vehicles continues to increase, the optimization rate
of the PBTSA algorithm stabilizes at above 15% relative to
the PBLA algorithm and decreases from 6% to 3% relative
to the TBTOA algorithm. Therefore, as the number of vehi-
cles initially increases, the optimization rate of the PBTSA
algorithm relative to the PBLA and TBTOA algorithms also
increases, as the increase in computing resources leads to a
higher optimization rate for the PBTSA algorithm. However,
after reaching a critical point in the number of vehicles, the
optimization rate starts to decrease, which is due to the nature
of data dependencies in DAG tasks.
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(a) (b) (c)

Fig. 6. Variations in algorithm execution time and optimization rate under different experimental parameters. (a) Results under different number of subtasks.
(b) Results under different directed edge densities. (c) Results under different number of vehicles.

Fig. 6 shows variations in algorithm execution time and
optimization rate under different experimental parameters.
Fig. 6(a) illustrates the execution time of algorithms and the
optimization rate of the PBTSA algorithm under different
number of subtasks. It can be observed that the TBTOA algo-
rithm shows the fastest growth in execution time. On the other
hand, the execution time of the PBLA and PBTSA algorithms
grows at a much slower rate. Therefore, in the same environ-
ment and with the same task, the PBLA algorithm shows the
shortest execution time, followed by the PBTSA algorithm.
The TBTOA algorithm has the longest execution time, sig-
nificantly longer than the execution times of the PBLA and
PBTSA algorithms.

Fig. 6(b) shows the execution time of algorithms and the
optimization rate of the PBTSA algorithm under different
directed edge densities. From the figure, it can be observed that
as the number of directed edges in the DAG tasks increases,
the execution time of the PBTSA, PBLA, and TBTOA algo-
rithms all increase. Among them, the TBTOA algorithm shows
the fastest growth in execution time. On the other hand, the
execution time of the PBLA and PBTSA algorithms increases
at a much slower rate. When the directed edge density ranges
from 0.05 to 0.9, the execution time of both algorithms remains
between 0 and 1 s. The optimization rate of the PBTSA algo-
rithm relative to the TBTOA algorithm consistently approaches
100%. However, when the directed edge density ranges from
0.05 to 0.5, the optimization rate of the PBTSA algorithm
relative to the PBLA algorithm decreases from −50% to
−60%. As the directed edge density continues to increase,
the optimization rate stabilizes at around −60%.

Fig. 6(c) illustrates the execution time of algorithms and
the optimization rate of the PBTSA algorithm under dif-
ferent number of vehicles. From the figure, it can be seen
that as the number of vehicles in the MEC-enabled 5G IoV
networks increase, the execution time of the PBTSA, PBLA,
and TBTOA algorithms all increase. Among them, the TBTOA
algorithm shows the fastest growth in execution time. When
the number of vehicles ranges from 5 to 200, the execution
time of the TBTOA algorithm increases from around 0 to
7 s. On the other hand, the execution time of the PBLA and
PBTSA algorithms increases at a much slower rate. When
the number of vehicles ranges from 5 to 200, the execution
time of both algorithms remains between 0 and 0.2 s. When

the number of vehicles ranges from 5 to 200, the optimization
rate of the PBTSA algorithm relative to the TBTOA algorithm
increases from 60% to nearly 100%, while the optimization
rate of the PBTSA algorithm relative to the PBLA algorithm
decreases from 0% to −40%.

The average utilization of computing resources for algo-
rithms in MEC-enabled 5G IoV networks is also an important
metric. Fig. 7 shows the variations in average utilization of
computing resources and optimization rate under different
experimental parameters. Fig. 7(a) shows the average utiliza-
tion of computing resources and optimization rate for different
number of subtasks. From the figure, it can be observed that
as the number of subtasks increases, the average utilization
of computing resources for the PBTSA, TBTOA, and PBLA
algorithms also increases because the increased number of
subtasks leads to higher utilization of computing resources
in vehicular networks. However, when the number of subtasks
reaches 350, the average utilization of computing resources for
the three algorithms starts to decrease due to the fixed comput-
ing resources in vehicular networks and the data dependency
of tasks. The average utilization of computing resources for the
PBTSA algorithm is significantly better than that of the PBLA
and TBTOA algorithms. The results indicate that the PBTSA
algorithm can effectively improve the average utilization of
resources.

Fig. 7(b) illustrates the average utilization of computing
resources and optimization rate for tasks with different directed
edge densities. It can be observed that as the directed edge den-
sity increases, the average utilization of computing resources
for the PBTSA, PBLA, and TBTOA algorithms decreases.
This is because the increase in the density of directed edges
in tasks leads to a decrease in the number of subtasks that can
be executed in parallel, resulting in idle computing resources.
The PBTSA algorithm has a slightly better average utilization
of computing resources compared to the TBTOA algorithm,
but it generally outperforms the PBLA algorithm. As the
density of directed edges in the DAG tasks increases, the
difference in the average utilization of computing resources
among the three algorithms gradually decreases. This is also
because the increase in the number of data dependencies
in the DAG tasks leads to a convergence in the execu-
tion order of subtasks for the PBTSA, PBLA, and TBTOA
algorithms.
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(a) (b) (c)

Fig. 7. Variations in average utilization of computing resources and optimization rate under different experimental parameters. (a) Results for different
number of subtasks. (b) Results for tasks with different directed edge densities. (c) Results for different number of vehicles.

(a) (b) (c)

Fig. 8. Variations in average processing delay and optimization rate under different experimental parameters. (a) Results for different number of DAG tasks.
(b) Results for different number of subtasks. (c) Results for different directed edge densities.

Fig. 7(c) presents the average utilization of computing
resources and optimization rate for different number of
vehicles. From the figure, it can be observed that as the num-
ber of vehicles increases, the average utilization of computing
resources decreases for all three algorithms. This is because
with an increased number of vehicles, computing resources
increase, but the DAG tasks remain the same. Additionally, due
to the data-dependency nature of the DAG tasks, the average
utilization of computing resources decreases. As the number of
vehicles increases, the PBTSA algorithm shows a higher aver-
age utilization of computing resources compared to the PBLA
algorithm and the TBTOA algorithm. This indicates that the
PBTSA algorithm achieves lower task processing delays with
higher average utilization of computing resources.

In order to further investigate the scene of handling multiple
identical DAG tasks within a short period of time, this sec-
tion conducts experiments to obtain the average processing
delay of DAG tasks. First, the three algorithms are used to
obtain the priority order for each DAG task during offload-
ing, and then the offloading decisions are made based on the
earliest scheduling time of each subtask. For example, at time
tA, DAG task A is generated, and at time tB, DAG task B is
generated. Assuming the PBTSA algorithm is used, the pri-
ority order of subtasks is given as order(A) = [nA,0, nA,1, . . .]
and order(B) = [nB,0, nB,1, . . .]. The earliest scheduling time
refers to the earliest time at which all preceding tasks of a
subtask have been executed. The initial task scheduling queue
is [(nA,0, tA), (nB,0, tB)]. Assuming tA < tB, the subtask nA,0
of DAG task A is prioritized for greedy offloading. Then,

the task scheduling queue becomes [(nA,1, tA,1), (nB,0, tB)].
If tA,1 > tB, then the subtask nB,0 of DAG task B is
greedily offloaded, and the task scheduling queue becomes
[(nA,1, tA,1), (nB,1, tB,1)]. This process continues until all sub-
tasks are offloaded, and relevant metrics are recorded for
performance comparison among the three algorithms.

Fig. 8(a) shows the average processing delay and
optimization rate for different number of DAG tasks after
being randomly offloaded within the time interval (0, 1) s,
using the three algorithms. From the figure, it can be observed
that as the number of randomly arriving DAG tasks increases,
the average processing delay of DAG tasks under the three
algorithms also increases. This is because the computing
resources are limited and the number of tasks increases,
resulting in an increase in computation time. When the number
of randomly arriving DAG tasks is between 1 and 20, the
optimization rate of the PBTSA algorithm relative to the PBLA
algorithm decreases from above 11% to around −4%, and
the optimization rate of the PBTSA algorithm relative to the
TBTOA algorithm fluctuates between (−1%, 1%). This is
because as the number of DAG tasks increases while the com-
puting resources remain unchanged, the optimization range of
the PBTSA algorithm also narrows, leading to a decrease in
the optimization rate.

Fig. 8(b) shows the average processing delay of DAG tasks
after handling multiple randomly arriving DAG subtasks, with
the number of subtasks as the variable. In each experiment, the
number of DAG tasks is set to 5, and the DAG’s directed edge
density is 0.01. From the figure, it can be observed that as the
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number of subtasks increases, the average processing delay of
DAG tasks under the three algorithms also increases. When the
number of subtasks is between 50 and 350, the optimization
rate of the PBTSA algorithm relative to the PBLA algorithm
fluctuates between 5% and 10%. When the number of sub-
tasks is between 350 and 800, the optimization rate stabilizes
at 12% or above. When the number of subtasks is between
50 and 800, the optimization rate of the PBTSA algorithm
relative to the TBTOA algorithm remains steady between 0%
and 1%.

Fig. 8(c) shows the average processing delay of DAG tasks
after multiple random DAG subtasks arrive, with the directed
edge density of the DAG tasks as the variable. From the figure,
it can be observed that as the directed edge density of the
subtasks increases, the average processing delay of the DAG
tasks under the three algorithms increases. When the directed
edge density varies from 0.1 to 0.9, the optimization rate of the
PBTSA algorithm relative to the PBLA algorithm gradually
decreases from 16% to close to 0%, and the average processing
delay of the PBTSA algorithm is similar to that of the TBTOA
algorithm. When the directed edge density varies from 0.01
to 0.09, the optimization rate of the PBTSA algorithm relative
to the PBLA algorithm is generally greater than 15%, and the
average processing delay of the PBTSA algorithm is generally
better than that of the TBTOA algorithm, but the optimization
rate is low.

VI. CONCLUSION

This article proposes an online scheduling algorithm for
minimizing latency in dependent task scheduling. In the
context of 5G-enabled IoV, where vehicles initiate DAG
tasks, the challenge lies in scheduling subtasks to fully uti-
lize the computing resources within the vehicular network
and achieve minimal task processing delay. This article estab-
lishes a mathematical model for DAG task offloading and
defines the optimization objective. Based on the established
model, a novel online DAG task scheduling algorithm called
PBTSA is proposed. This algorithm utilizes the RBFS algo-
rithm to generate priorities for each subtask, resolves data
dependencies within the DAG tasks, and greedily offloads
subtasks in descending priority order, aiming to minimize
subtask execution delay and achieve the optimization objec-
tive. Additionally, the PBTSA algorithm is compared with two
existing algorithms through simulation experiments to evalu-
ate its performance. The results demonstrate that the PBTSA
algorithm effectively reduces DAG task processing delay and
shows advantages in terms of algorithm decision execution
time and computational resource utilization.

In real-world scenes, multiple DAG tasks are often exe-
cuted concurrently within the MEC-enabled 5G IoV networks.
Therefore, our future research can focus on investigating uni-
fied subtask scheduling for multiple identical DAG tasks and
multiple distinct types of DAG tasks, respectively. By address-
ing this issue, a more comprehensive understanding of subtask
scheduling in the context of multiple concurrent DAG tasks
can be achieved.
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